R/fitDistributions.R

Defines functions weighted.var Rnorm.exp Rnorm RgammaMLE

Documented in RgammaMLE Rnorm Rnorm.exp

###########################################################################
##
##   Copyright 2013, 2014 Charles Danko and Minho Chae.
##
##   This program is part of the groHMM R package
##
##   groHMM is free software: you can redistribute it and/or modify it
##   under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   This program is distributed in the hope that it will be useful, but
##   WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
##   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
##   for more details.
##
##   You should have received a copy of the GNU General Public License along
##   with this program.  If not, see <http://www.gnu.org/licenses/>.
##
##########################################################################

########################################################################
##
##  Distribution Fitting Functions -- MLEfit given X.
##  Date: 2014-03-27
##
##  Presently, fits:
##      -- Gamma distribution  (RgammaMLE)
##      -- Normal distrubution (Rnorm)
##
##  Todo:
##  (1) Add fits for: 
##      -- Normal by MLE
##      -- Poisson
##      -- Negative binomial (??)
##
########################################################################


#' RgammaMLE fits a gamma distribution to a specified data vector using maximum
#' likelihood.
#'
#' @param X A vector of observations, assumed to be real numbers in the 
#' inveraval [0,+Inf).  
#' @return Returns a list of parameters for the best-fit gamma 
#' distribution (shape and scale).
#' @author Charles G. Danko
RgammaMLE <- function(X) {
    if(sum(X<0) > 0) message("Negative values not allowed!")
    N <- as.double(NROW(X))
    sumxis <- as.double(sum(X))
    sumlogxis <- as.double(sum(log(X)))
    Fit <- .Call("RgammaMLE", N, sumxis, sumlogxis, PACKAGE = "groHMM")
    return(Fit)
}

#' Rnorm fits a normal distribution to a specified data vector using maximum 
#' likelihood.
#'
#' @param X A vector of observations, assumed to be real numbers in the 
#' inveraval (-Inf,+Inf).  
#' @return Returns a list of parameters for the best-fit normal distribution 
#' (mean and varience).
#' @author Charles G. Danko
Rnorm <- function(X) {
    returnList      <- list()
    returnList$mean <- mean(X)
    returnList$var  <- var(X)

    return(returnList)
}

################################
##
##  R interface to MLEFit for alpha*Normal+(1-alpha)*Exponential hybrid 
##  distribution.
##
################################

#' Rnorm.exp fits a normal+exponential distribution to a specified data 
#' vector using maximum likelihood.
#'
#' Distrubtion function devined by: alpha*Normal(mean, varience)+(1-alpha)
#' *Exponential(lambda).
#'
#' Fits nicely with data types that look normal overall, but have a long 
#' tail starting for positive values.
#'
#' @param xi A vector of observations, assumed to be real numbers in the 
#' inveraval (-Inf,+Inf).  
#' @param wi A vector of weights.  Default: vector of repeating 1; indicating 
#' all observations are weighted equally. (Are these normalized internally?!  
#' Or do they have to be [0,1]?)
#' @param guess Initial guess for paremeters.  Default: c(0.5, 0, 1, 1).
#' @param tol Convergence tolerance.  Default: sqrt(.Machine$double.eps).
#' @param maxit  Maximum number of iterations.  Default: 10,000.
#' @return Returns a list of parameters for the best-fit normal distribution 
#' (alpha, mean, varience, and lambda).
#' @author Charles G. Danko
Rnorm.exp <- function(xi, wi=rep(1,NROW(xi)), guess=c(0.5, 0, 1, 1), 
    tol=sqrt(.Machine$double.eps), maxit=10000) {
    Fit <- .Call("RNormExpMLE", xi, wi, guess, tol, as.integer(maxit), 
        PACKAGE = "groHMM")
}

################################
##
## weighted.var -- Computes the weighted varience, where the varience is 
## weighted by some factor...
##
###############################
weighted.var <- function(x, w, na.rm = FALSE) {
    if (na.rm) {
        w <- w[i <- !is.na(x)]
        x <- x[i]
    }
    sum.w <- sum(w)
    sum.w2 <- sum(w^2)
    mean.w <- sum(x * w) / sum(w)
    (sum.w / (sum.w^2 - sum.w2)) * sum(w * (x - mean.w)^2, na.rm = na.rm)
}

Try the groHMM package in your browser

Any scripts or data that you put into this service are public.

groHMM documentation built on Nov. 8, 2020, 8:09 p.m.