Nothing
params <-
list(seed = 2924)
## ---- eval=FALSE--------------------------------------------------------------
# if (!require("BiocManager"))
# install.packages("BiocManager")
# BiocManager::install("glmSparseNet")
## ----packages, message=FALSE, warning=FALSE-----------------------------------
library(dplyr)
library(ggplot2)
library(survival)
library(loose.rock)
library(futile.logger)
library(curatedTCGAData)
library(TCGAutils)
#
library(glmSparseNet)
#
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- loose.rock::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
## ----curated_data, include=FALSE----------------------------------------------
# chunk not included as it produces to many unnecessary messages
prad <- curatedTCGAData(diseaseCode = "PRAD", assays = "RNASeq2GeneNorm", FALSE)
## ----curated_data_non_eval, eval=FALSE----------------------------------------
# prad <- curatedTCGAData(diseaseCode = "PRAD", assays = "RNASeq2GeneNorm", FALSE)
## ----data.show, warning=FALSE, error=FALSE------------------------------------
# keep only solid tumour (code: 01)
prad.primary.solid.tumor <- TCGAutils::splitAssays(prad, '01')
xdata.raw <- t(assay(prad.primary.solid.tumor[[1]]))
# Get survival information
ydata.raw <- colData(prad.primary.solid.tumor) %>% as.data.frame %>%
# Find max time between all days (ignoring missings)
rowwise %>%
mutate(time = max(days_to_last_followup, days_to_death, na.rm = TRUE)) %>%
# Keep only survival variables and codes
select(patientID, status = vital_status, time) %>%
# Discard individuals with survival time less or equal to 0
filter(!is.na(time) & time > 0) %>% as.data.frame
# Set index as the patientID
rownames(ydata.raw) <- ydata.raw$patientID
# keep only features that have standard deviation > 0
xdata.raw <- xdata.raw[TCGAbarcode(rownames(xdata.raw)) %in%
rownames(ydata.raw),]
xdata.raw <- xdata.raw %>%
{ (apply(., 2, sd) != 0) } %>%
{ xdata.raw[, .] } %>%
scale
# Order ydata the same as assay
ydata.raw <- ydata.raw[TCGAbarcode(rownames(xdata.raw)), ]
set.seed(params$seed)
small.subset <- c(geneNames(c('ENSG00000103091', 'ENSG00000064787',
'ENSG00000119915', 'ENSG00000120158',
'ENSG00000114491', 'ENSG00000204176',
'ENSG00000138399'))$external_gene_name,
sample(colnames(xdata.raw), 100)) %>% unique %>% sort
xdata <- xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]]
ydata <- ydata.raw %>% select(time, status)
## ----fit----------------------------------------------------------------------
set.seed(params$seed)
fitted <- cv.glmHub(xdata, Surv(ydata$time, ydata$status),
family = 'cox',
nlambda = 1000,
network = 'correlation',
network.options = networkOptions(cutoff = .6,
min.degree = .2))
## ----results------------------------------------------------------------------
plot(fitted)
## ----show_coefs---------------------------------------------------------------
coefs.v <- coef(fitted, s = 'lambda.min')[,1] %>% { .[. != 0]}
coefs.v %>% {
data.frame(ensembl.id = names(.),
gene.name = geneNames(names(.))$external_gene_name,
coefficient = .,
stringsAsFactors = FALSE)
} %>%
arrange(gene.name) %>%
knitr::kable()
## ----hallmarks----------------------------------------------------------------
geneNames(names(coefs.v)) %>% { hallmarks(.$external_gene_name)$heatmap }
## -----------------------------------------------------------------------------
separate2GroupsCox(as.vector(coefs.v),
xdata[, names(coefs.v)],
ydata,
plot.title = 'Full dataset', legend.outside = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.