Description Usage Arguments Value Examples
Calculate degree of correlation matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
xdata |
calculate correlation matrix on each column |
type |
either "discrete" or "continuous", see sparsebnUtils::sparsebnData |
levels |
(optional) list of levels for each node. see sparsebnUtils::sparsebnData |
ivn |
(optional) list of interventions for each observation, see sparsebnUtils::sparsebnData |
n |
(optional) number of rows from data matrix to print, see sparsebnUtils::sparsebnData |
object |
(optional) an object of type sparsebnData, see sparsebnUtils::sparsebnData |
cutoff |
positive value that determines a cutoff value |
consider.unweighted |
consider all edges as 1 if they are greater than 0 |
n.cores |
number of cores to be used |
show.message |
shows cache operation messages |
force.recalc.degree |
force recalculation, instead of going to cache |
force.recalc.network |
force recalculation of network and penalty weights, instead of going to cache |
... |
parameters for sparsebn::estimate.dag |
a vector of the degrees
1 2 3 | # generate a random matrix of observations
xdata <- matrix(rnorm(1000), nrow = 20)
degreeSparsebn(xdata)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.