Nothing
test_that("test_de works", {
set.seed(1)
Y <- matrix(rnbinom(n = 30 * 10, mu = 4, size = 0.3), nrow = 30, ncol =10)
annot <- data.frame(group = sample(c("A", "B"), size = 10, replace = TRUE),
cont1 = rnorm(10), cont2 = rnorm(10, mean = 30))
design <- model.matrix(~ group + cont1 + cont2, data = annot)
reduced_des <- model.matrix(~ group + cont1, data = annot)
fit <- glm_gp(Y, design = design)
res <- test_de(fit, reduced_design = reduced_des)
res2 <- test_de(fit, contrast = cont2)
# Should be equal except for log-fold change column
expect_equal(res[,-7], res2[,-7], tolerance = 1e-6)
expect_equal(res$lfc, rep(NA, 30), tolerance = 1e-6)
expect_equal(res2$lfc, fit$Beta[,"cont2"] / log(2), tolerance = 1e-6)
design_wo_intercept <- model.matrix(~ group + cont1 + cont2 - 1, data = annot)
red_design <- model.matrix( ~ cont1 + cont2 + 1, data = annot)
fit_wo_intercept <- glm_gp(Y, design = design_wo_intercept)
res3 <- test_de(fit_wo_intercept, reduced_design = red_design)
res4 <- test_de(fit_wo_intercept, contrast = groupA - groupB)
expect_equal(res3[,-7], res4[,-7], tolerance = 1e-6)
res5 <- test_de(fit, contrast = "-groupB")
expect_equal(res4, res5, tolerance = 0.1)
})
test_that("test_de works with contrast vector input", {
Y <- matrix(rnbinom(n = 30 * 10, mu = 4, size = 0.3), nrow = 30, ncol =10)
annot <- data.frame(group = sample(c("A", "B"), size = 10, replace = TRUE),
cont1 = rnorm(10), cont2 = rnorm(10, mean = 30))
design <- model.matrix(~ group + cont1 + cont2, data = annot)
fit <- glm_gp(Y, design = design)
res1 <- test_de(fit, contrast = cont2 - groupB)
res2 <- test_de(fit, contrast = c(0, -1, 0, 1))
expect_equal(res1, res2)
})
test_that("test_de handles on_disk correctly", {
Y <- matrix(rnbinom(n = 30 * 10, mu = 4, size = 0.3), nrow = 30, ncol = 10)
Y_hdf5 <- HDF5Array::writeHDF5Array(Y)
annot <- data.frame(group = sample(c("A", "B"), size = 10, replace = TRUE),
cont1 = rnorm(10), cont2 = rnorm(10, mean = 30))
se <- SummarizedExperiment::SummarizedExperiment(Y_hdf5, colData = annot)
# The actual check is difficult, because internally the res2 should be calculated on_disk
fit1 <- glm_gp(se, design = ~ group + cont1 + cont2, on_disk = TRUE)
res1 <- test_de(fit1, reduced_design = ~ 1)
fit2 <- glm_gp(se, design = ~ group + cont1 + cont2, on_disk = FALSE)
res2 <- test_de(fit2, reduced_design = ~ 1)
expect_equal(res1, res2)
})
test_that("NSE works", {
Y <- matrix(rnbinom(n = 30 * 100, mu = 4, size = 0.3), nrow = 30, ncol = 100)
annot <- data.frame(sample = sample(c("A", "B", "C", "D"), size = 100, replace = TRUE),
cont1 = rnorm(100), cont2 = rnorm(100, mean = 30),
cell_type = sample(c("Tcell", "Bcell", "Makrophages"), size = 100, replace = TRUE))
annot$condition <- ifelse(annot$sample %in% c("A", "B"), "ctrl", "treated")
head(annot)
se <- SummarizedExperiment::SummarizedExperiment(Y, colData = annot)
fit <- glm_gp(se, design = ~ condition + cont1 + cont2 + cell_type - 1, overdispersion = FALSE, size_factors = FALSE)
res <- test_de(fit, conditionctrl - conditiontreated)
res2 <- test_de(fit, conditionctrl - conditiontreated,
full_design = ~ condition + cont1 + cont2 - 1,
subset_to = cell_type == "Tcell",
n_max = 4)
res3 <- test_de(fit, conditionctrl - conditiontreated,
full_design = ~ condition + cont1 - 1,
subset_to = cell_type == "Tcell",
pseudobulk_by = sample,
n_max = 4)
res4 <- test_de(fit, reduced_design = ~ cont1 + 1,
full_design = ~ cont1 + cont2,
subset_to = cell_type == "Bcell",
pseudobulk_by = sample,
n_max = 4)
})
test_that("Pseudo bulk produces same results as making it manually", {
Y <- matrix(rnbinom(n = 30 * 100, mu = 4, size = 0.3), nrow = 30, ncol = 100)
annot <- data.frame(sample = sample(LETTERS[1:6], size = 100, replace = TRUE),
cont1 = rnorm(100), cont2 = rnorm(100, mean = 30),
cell_type = sample(c("Tcell", "Bcell", "Makrophages"), size = 100, replace = TRUE))
annot$condition <- ifelse(annot$sample %in% c("A", "B", "C"), "ctrl", "treated")
se <- SummarizedExperiment::SummarizedExperiment(Y, colData = annot)
fit <- glm_gp(se, design = ~ condition + cont1 + cont2 - 1)
res <- test_de(fit, reduced_design = ~ cont1 + cont2 + 1,
pseudobulk_by = sample)
splitter <- split(seq_len(ncol(se)), SummarizedExperiment::colData(se)$sample)
pseudobulk_mat <- do.call(cbind, lapply(splitter, function(idx){
matrixStats::rowSums2(assay(se), cols = idx)
}))
pseudo_design_mat <- do.call(rbind, lapply(splitter, function(idx){
matrixStats::colMeans2(fit$model_matrix, rows = idx)
}))
fit2 <- glm_gp(pseudobulk_mat, design = pseudo_design_mat)
res2 <- test_de(fit2, contrast = Coef_1 - Coef_2)
# Equal except for lfc column because of contrast vs reduced_design stuff:
expect_equal(res[,-7], res2[,-7])
res3 <- test_pseudobulk(se, design = ~ condition + cont1 + cont2 - 1,
aggregate_cells_by = sample,
contrast = conditionctrl - conditiontreated)
expect_equal(res2, res3)
res4 <- test_pseudobulk(se, design = ~ condition + cont1 + cont2,
reference_level = "treated",
aggregate_cells_by = sample,
contrast = conditionctrl)
# They are as good as identical
lapply(c("pval", "adj_pval", "f_statistic", "lfc"), function(col){
expect_gt(cor(res3[[col]], res4[[col]]), 0.99)
})
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.