Nothing
sampsInVCF = function(tf) {
#
# probe into VCF file to determine sample names
# perhaps you don't need the chr? can determine from header?
#
ss <- samples(vh <- scanVcfHeader(tf))
attr(ss, "vh") <- vh
ss
}
#snvsOnly = function(v) {
#
# confine VCF instance to loci with single nucleotide REF and ALT
#
# 12/25 use new utility
# v[ width(ref(v)) == 1 & width(GenomicRanges::unlist(alt(v)))==1, ]
# v[ which(isSNV(v)), ] -- seems unduly limited
# ev = expand(v)
# ev[ which(width(ref(ev))==1 & nchar(alt(ev))==1), ]
# }
cisAssoc = function( summex, vcf.tf, rhs=~1, nperm=3, cisradius=50000,
genome="hg19", assayind=1, lbmaf=1e-6, lbgtf = 1e-6, dropUnivHet=TRUE,
infoFields = c("LDAF", "SVTYPE"),
simpleSNV=TRUE) {
#
# LDAF is concession to bug in readVcf where specifying only SVTYPE
# leads to error on 1KG VCF data
#
#
# take all features from RangedSummarizedExperiment
# harmonize samples between summex and vcf.tf (TabixFile)
# obtain genotypes of variants cis to features in summex -- using only SNVs!!
# compute associations between stx(features) and vtx(genotypes)
# store in a GRanges ordered by variant address with relevant metadata
#
# obtain sample IDs and harmonize genotypes and molec phenotype assay data
#
thecall = match.call()
usn = unique(seqnames(summex))
if(length(usn)>1) stop("current implementation insists that length(unique(seqnames(summex)))==1 as VCF assumed chr-specific")
sampidsInSumm = colnames(summex)
sampidsInVCF = sampsInVCF(vcf.tf)
vh = attr(sampidsInVCF, "vh")
oksamp = intersect(sampidsInSumm, sampidsInVCF)
stopifnot(length(oksamp)>0)
summex = summex[, oksamp]
#
# harmonize annotation for seqnames -- could use style methods here
#
sn = force(as.character(seqnames(summex)))
stopifnot(length(ctouse <- unique(sn))==1)
#
# generate cis search space for assay probes
#
cisr = trim(rowRanges(summex)+cisradius)
requestSize = length(cisr)
seqlevels(cisr) = force(seqlevels(cisr)) # must use VCF-oriented seqlevels
#
# first pass at genotype data retrieval
#
vp = ScanVcfParam(fixed="ALT", info=infoFields, geno="GT",
samples=oksamp, which=cisr) # which will sort variants into groups defined by probes
vp2 = ScanVcfParam(samples=oksamp[1], which=cisr) # lightweight
vdata = readVcf(vcf.tf, genome=genome, param=vp) # compressed
liteGT = readGT(vcf.tf, param=vp2) # for verification of readVcf
#
# retain only SNVs with MAF > lbmaf
# 12/26/2014 -- the exclusion of non-SNVs has become complex
# we introduce attempt to capture SVTYPE field above. this may need
# to be moved up to interface
#
# if we can avoid complex SNV handling
#
if (!simpleSNV) {
svinfo = info(vdata)$SVTYPE
if (length(svinfo)>0) {
ok = which(is.na(svinfo))
vdata = vdata[ok,]
#
# but the example extract has an ALT entry of <DEL> for which SVTYPE is NA
#
ael = elementNROWS(alt(vdata))
vdata = vdata[ which(ael==1), ]
stopifnot(length(alt(vdata)) == length(unlist(alt(vdata))))
todrop = which(!(unlist(alt(vdata)) %in% c("A", "C", "T", "G")))
if (length(todrop)>0) vdata = vdata[-todrop,]
tmpalt = try( DNAStringSetList(alt(vdata)) )
if (inherits( tmpalt, "try-error" )) stop("attempt to reclass ALT fails after SV exclusion")
alt(vdata) = tmpalt
}
}
nonSNV = which(!isSNV(vdata))
if (length(nonSNV)>0) {
vdata = vdata[-nonSNV,]
liteGT = liteGT[-nonSNV,,drop=FALSE]
}
gtdata = genotypeToSnpMatrix(vdata)
uhetinds = NULL
if (dropUnivHet) {
message("checking for universal heterozygous loci for exclusion (as dropUnivHet == TRUE) ...")
gtchar = as(gtdata[[1]],"character") # could be slow
uhetinds = which(apply(gtchar,2, function(x) all(x %in% c("A/B", "NA"))))
if ((nu <- length(uhetinds))>0)
warning(paste0("found ", nu, " universally heterozygous loci."))
if (nu == ncol(gtdata[[1]])) {
warning("all loci universally heterozygous, returning NULL")
return(NULL)
}
message("done checking.")
}
csumm = col.summary(gtdata[[1]])
inmafs = csumm[,"MAF"]
ingtmat = csumm[,c("P.AA", "P.AB", "P.BB")]
lowgt = apply(ingtmat,1,min,na.rm=TRUE)
bad = union(which(inmafs<lbmaf | lowgt<lbgtf), uhetinds)
if (length(bad)>0) {
vdata = vdata[-bad,]
liteGT = liteGT[-bad,,drop=FALSE]
gtdata = genotypeToSnpMatrix(vdata)
}
varrd = rowRanges(vdata) # would like to use this as the backbone of test result report
#
# use a list mapping probes to SNVs in cis to organize the testing
#
uo = unique(varrd$paramRangeID)
nRequestsSatisfied = length(uo)
if (requestSize != nRequestsSatisfied) warning("number unique values of paramRangeID returned differs from number requested")
snpbyprobe = split(names(varrd), varrd$paramRangeID)[uo] # will reorder without uo
probes2test = names(snpbyprobe)
numdata = assays(summex)[[assayind]][probes2test,,drop=FALSE]
#
# force the formula to have form ex~[rhs]
#
infmla = as.formula(paste("ex", paste(as.character(rhs), collapse="")))
tsts = vector("list", length(probes2test) )
summs = col.summary(gtdata$genotypes)
mafs = summs[,"MAF"]
names(mafs) = rownames(summs)
#
# loop over cis map to collect tests
#
if (!exists(".Random.seed")) .xyzzy = runif(1)
iniSeed = .Random.seed
suppressWarnings({
for (i in 1:length(probes2test)) {
ex = numdata[ probes2test[i], ]
tsts[[i]] = snp.rhs.tests( formula=infmla,
snp.data=gtdata$genotypes[, snpbyprobe[[ probes2test[i] ]] ], family="gaussian",
data=data.frame(ex=ex, as(colData(summex), "data.frame") ), uncertain=TRUE )
}
})
#
# test under permutation for plug-in FDR
#
perms = vector("list", nperm)
for (j in 1:nperm) {
perms[[j]] = vector("list", length(probes2test))
suppressWarnings({
for (i in 1:length(probes2test)) {
ex = as.numeric(numdata[ probes2test[i], ])
if (any(is.na(ex))) {
print("perm")
print(j)
print(probes2test[i])
stop("NA sneaks in")
}
perms[[j]][[i]] = snp.rhs.tests( formula=infmla,
snp.data=gtdata$genotypes[, snpbyprobe[[ probes2test[i] ]] ], family="gaussian",
data=data.frame(ex=sample(ex), as(colData(summex), "data.frame") ), uncertain=TRUE )
}
})
}
names(tsts) = probes2test
#
# bind test results to varrd GRanges instance -- note that ALT may be either
# CharacterList or DNAStringSetList and this may need attention on collection
#
chisqs = unlist(lapply(tsts, chi.squared))
varrd$chisq = chisqs
pnames = paste0("permScore_", 1:nperm)
for (i in 1:nperm) {
mcols(varrd)[ ,pnames[i] ] = unlist(lapply(perms[[i]], chi.squared))
}
varrd$snp = names(varrd)
varrd$MAF = as.numeric(mafs[varrd$snp])
varrd$probeid = as.character(varrd$paramRangeID)
metadata(varrd)$sessInfo = sessionInfo()
metadata(varrd)$init.Random.seed = iniSeed
metadata(varrd)$dimSummex = dim(summex)
metadata(varrd)$rowRangesSummex = rowRanges(summex) # should be small
metadata(varrd)$vcf.tf = vcf.tf # should be small
metadata(varrd)$vcfHeader = vh # should be small
metadata(varrd)$requestSize = requestSize
metadata(varrd)$nRequestsSatisfied = nRequestsSatisfied
metadata(varrd)$dimliteGT = dim(liteGT)
metadata(varrd)$theCall = thecall
rm(liteGT)
names(varrd) = NULL
snpl = start(varrd)
gstart = abs(start(summex[varrd$probeid,]))
gend = abs(end(summex[varrd$probeid,]))
dists = pmin(abs(snpl-gstart), abs(snpl-gend))
dists[ which((snpl >= gstart) & (snpl <= gend))] = 0
varrd$mindist = dists
varrd
}
# use queryVCF
.SnpMatrixCisToSummex = function(summex, vcf.tf,
radius=50000L, genome="hg19") {
usn = unique(seqnames(summex))
if (length(usn) > 1)
stop("current implementation insists that length(unique(seqnames(summex)))==1 as VCF assumed chr-specific")
sampidsInSumm = colnames(summex)
sampidsInVCF = sampsInVCF(vcf.tf)
oksamp = intersect(sampidsInSumm, sampidsInVCF)
stopifnot(length(oksamp) > 0)
summex = summex[, oksamp]
# sn = snfilt(as.character(seqnames(summex)))
# stopifnot(length(ctouse <- unique(sn)) == 1)
cisr = rowRanges(summex) + radius
# seqlevels(cisr) = snfilt(seqlevels(cisr))
vp = ScanVcfParam(fixed = "ALT", info = NA, geno = "GT",
samples = oksamp, which = cisr)
vdata = readVcf(vcf.tf, genome = genome, param = vp)
rdd = rowRanges(vdata)
# vdata = snvsOnly(vdata) -- dead function
genotypeToSnpMatrix(vdata)
}
.eqBox = function( gene, snp, se, tf, radius=1e6, genome="hg19", ...) {
stopifnot(gene %in% rownames(se))
LL = .SnpMatrixCisToSummex(se[gene,], tf, radius=radius, genome=genome)[[1]]
stopifnot(snp %in% colnames(LL))
okids = intersect(colnames(se), rownames(LL))
stopifnot(length(okids)>0)
ex = assay(se[ gene, okids])
gt = as(LL[okids, snp], "character")
boxplot(split(ex,gt), xlab=snp, ylab=gene, ...)
}
.eqDesc = function (gene, snp, se, tf, radius=1e6, genome="hg19", ...)
{
stopifnot(gene %in% rownames(se))
LL = .SnpMatrixCisToSummex(se[gene, ], tf, radius=radius)[[1]]
stopifnot(snp %in% colnames(LL))
okids = intersect(colnames(se), rownames(LL))
stopifnot(length(okids) > 0)
ex = assay(se[gene, okids])
gt = as(LL[okids, snp], "character")
sapply(split(ex, gt), length)
}
prep.cisAssocNB = function( summex, vcf.tf, geneind=1, snpind=1, rhs=~1, nperm=3, cisradius=50000,
genome="hg19", assayind="counts", lbmaf=1e-6, dropUnivHet=TRUE,
infoFields = c("LDAF", "SVTYPE") ) {
#
#
# strategy is to a) select a gene for cis identification of SNP
# b) select a SNP in this set for analysis
# c) use all genes for variance estimation
#
# LDAF is concession to bug in readVcf where specifying only SVTYPE
# leads to error on 1KG VCF data
#
#
# take all features from RangedSummarizedExperiment
# harmonize samples between summex and vcf.tf (TabixFile)
# obtain genotypes of variants cis to features in summex -- using only SNVs!!
# compute associations between stx(features) and vtx(genotypes)
# store in a GRanges ordered by variant address with relevant metadata
#
# obtain sample IDs and harmonize genotypes and molec phenotype assay data
#
ng = length(rowRanges(summex))
usn = unique(seqnames(summex))
if(length(usn)>1) stop("current implementation insists that length(unique(seqnames(summex)))==1 as VCF assumed chr-specific")
sampidsInSumm = colnames(summex)
sampidsInVCF = sampsInVCF(vcf.tf)
oksamp = intersect(sampidsInSumm, sampidsInVCF)
stopifnot(length(oksamp)>0)
summex = summex[, oksamp]
#
# harmonize annotation for seqnames -- could use style methods here
#
sn = force(as.character(seqnames(summex)))
stopifnot(length(ctouse <- unique(sn))==1)
#
# generate cis search space for assay probes
#
cisr = rowRanges(summex)[geneind]+cisradius
seqlevels(cisr) = force(seqlevels(cisr)) # must use VCF-oriented seqlevels
#
# first pass at genotype data retrieval
#
vp = ScanVcfParam(fixed="ALT", info=infoFields, geno="GT",
samples=oksamp, which=cisr) # which will sort variants into groups defined by probes
vdata = readVcf(vcf.tf, genome=genome, param=vp) # compressed
#
# retain only SNVs with MAF > lbmaf
# 12/26/2014 -- the exclusion of non-SNVs has become complex
# we introduce attempt to capture SVTYPE field above. this may need
# to be moved up to interface
svinfo = info(vdata)$SVTYPE
if (length(svinfo)>0) {
ok = which(is.na(svinfo))
vdata = vdata[ok,]
#
# but the example extract has an ALT entry of <DEL> for which SVTYPE is NA
#
ael = elementNROWS(alt(vdata))
vdata = vdata[ which(ael==1), ]
stopifnot(length(alt(vdata)) == length(unlist(alt(vdata))))
todrop = which(!(unlist(alt(vdata)) %in% c("A", "C", "T", "G")))
if (length(todrop)>0) vdata = vdata[-todrop,]
tmpalt = try( DNAStringSetList(alt(vdata)) )
if (inherits( tmpalt, "try-error" )) stop("attempt to reclass ALT fails after SV exclusion")
alt(vdata) = tmpalt
}
nonSNV = which(!isSNV(vdata))
if (length(nonSNV)>0) vdata = vdata[-nonSNV,]
gtdata = genotypeToSnpMatrix(vdata)
uhetinds = NULL
if (dropUnivHet) {
message("checking for universal heterozygous loci for exclusion (as dropUnivHet == TRUE) ...")
gtchar = as(gtdata[[1]],"character") # could be slow
uhetinds = which(apply(gtchar,2, function(x) all(x %in% c("A/B", "NA"))))
if ((nu <- length(uhetinds))>0)
warning(paste0("found ", nu, " universally heterozygous loci."))
message("done checking.")
}
csumm = col.summary(gtdata[[1]])
inmafs = csumm[,"MAF"]
bad = union(which(inmafs<lbmaf), uhetinds)
if (length(bad)>0) {
vdata = vdata[-bad,]
gtdata = genotypeToSnpMatrix(vdata)
}
varrd = rowRanges(vdata) # would like to use this as the backbone of test result report
# rad = rowRanges(vdata[snpind])+cisradius
# fo = findOverlaps( rowRanges(summex), rad )
# stopifnot(length(subjectHits(fo))>0)
# summex = summex[ subjectHits(fo), ]
colData(summex)$snp = as(gtdata[[1]], "numeric")[,snpind]
metadata(colData(summex))$snpgrange = varrd[snpind]
#list(gtdata=gtdata[[1]][,snpind], varrd=varrd[snpind], summex=summex)
summex
}
AllAssoc = function( summex, vcf.tf, variantRange, rhs=~1, nperm=3,
genome="hg19", assayind=1, lbmaf=1e-6, lbgtf = 1e-6, dropUnivHet=TRUE,
infoFields = c("LDAF", "SVTYPE")) {
#
# LDAF is concession to bug in readVcf where specifying only SVTYPE
# leads to error on 1KG VCF data
#
#
# take all features from RangedSummarizedExperiment
# harmonize samples between summex and vcf.tf (TabixFile)
# obtain genotypes of variants cis to features in summex -- using only SNVs!!
# compute associations between stx(features) and vtx(genotypes)
# store in a GRanges ordered by variant address with relevant metadata
#
# obtain sample IDs and harmonize genotypes and molec phenotype assay data
#
thecall = match.call()
sampidsInSumm = colnames(summex)
sampidsInVCF = sampsInVCF(vcf.tf)
vh = attr(sampidsInVCF, "vh")
oksamp = intersect(sampidsInSumm, sampidsInVCF)
stopifnot(length(oksamp)>0)
summex = summex[, oksamp]
#
# harmonize annotation for seqnames -- could use style methods here
#
sn = force(as.character(seqnames(summex)))
#
# first pass at genotype data retrieval
#
vp = ScanVcfParam(fixed="ALT", info=infoFields, geno="GT",
samples=oksamp, which=variantRange)
vp2 = ScanVcfParam(samples=oksamp[1], which=variantRange) # lightweight
vdata = readVcf(vcf.tf, genome=genome, param=vp) # compressed
liteGT = readGT(vcf.tf, param=vp2) # for verification of readVcf
#
# retain only SNVs with MAF > lbmaf
# 12/26/2014 -- the exclusion of non-SNVs has become complex
# we introduce attempt to capture SVTYPE field above. this may need
# to be moved up to interface
nonSNV = which(!isSNV(vdata))
if (length(nonSNV)>0) {
vdata = vdata[-nonSNV,]
liteGT = liteGT[-nonSNV,,drop=FALSE]
}
if (length(vdata) == 0) {
message("no SNP identified in range:")
show(variantRange)
message("returning NULL")
return(NULL)
}
gtdata = genotypeToSnpMatrix(vdata)
uhetinds = NULL
if (dropUnivHet) {
message("checking for universal heterozygous loci for exclusion (as dropUnivHet == TRUE) ...")
gtchar = as(gtdata[[1]],"character") # could be slow
uhetinds = which(apply(gtchar,2, function(x) all(x %in% c("A/B", "NA"))))
if ((nu <- length(uhetinds))>0)
warning(paste0("found ", nu, " universally heterozygous loci."))
if (nu == ncol(gtdata[[1]])) {
warning("all loci universally heterozygous, returning NULL")
return(NULL)
}
message("done checking.")
}
csumm = col.summary(gtdata[[1]])
inmafs = csumm[,"MAF"]
ingtmat = csumm[,c("P.AA", "P.AB", "P.BB")]
lowgt = apply(ingtmat,1,min,na.rm=TRUE)
bad = union(which(inmafs<lbmaf | lowgt<lbgtf), uhetinds)
if (length(bad)>0) {
vdata = vdata[-bad,]
liteGT = liteGT[-bad,,drop=FALSE]
gtdata = genotypeToSnpMatrix(vdata)
}
varrd = rowRanges(vdata) # would like to use this as the backbone of test result report
#
# use a list mapping probes to SNVs in cis to organize the testing
#
probes2test = rownames(summex)
numdata = assays(summex)[[assayind]][probes2test,,drop=FALSE]
#
# force the formula to have form ex~[rhs]
#
infmla = as.formula(paste("ex", paste(as.character(rhs), collapse="")))
tsts = vector("list", length(probes2test) )
summs = col.summary(gtdata$genotypes)
mafs = summs[,"MAF"]
hwez = summs[,"z.HWE"]
names(mafs) = rownames(summs)
names(hwez) = rownames(summs)
#
# loop over probe list map to collect tests
#
if (!exists(".Random.seed")) .xyzzy = runif(1)
iniSeed = .Random.seed
suppressWarnings({
for (i in 1:length(probes2test)) {
ex = numdata[ probes2test[i], ]
ndf = data.frame(ex=ex, as(colData(summex), "data.frame") )
rownames(ndf) = colnames(summex)
tsts[[i]] = snp.rhs.tests( formula=infmla,
snp.data=gtdata$genotypes[, names(varrd) ], family="gaussian",
data=ndf, uncertain=TRUE )
}
})
#
# test under permutation for plug-in FDR
#
perms = vector("list", nperm)
for (j in 1:nperm) {
perms[[j]] = vector("list", length(probes2test))
suppressWarnings({
for (i in 1:length(probes2test)) {
ex = as.numeric(numdata[ probes2test[i], ])
ndf = data.frame(ex=sample(ex), as(colData(summex), "data.frame") )
rownames(ndf) = colnames(summex) # but ex is scrambled
perms[[j]][[i]] = snp.rhs.tests( formula=infmla,
snp.data=gtdata$genotypes[, names(varrd) ], family="gaussian",
# this data frame has rownames and will be reordered by snp.rhs.tests
# must avoid this
#( data=data.frame(ex=ex, as(colData(summex), "data.frame") )
data=ndf, uncertain=TRUE)
}
})
}
names(tsts) = probes2test
#
# bind test results to varrd GRanges instance -- note that ALT may be either
# CharacterList or DNAStringSetList and this may need attention on collection
#
#chisqs = unlist(lapply(tsts, chi.squared))
## bind on probe-specific assoc scores for all SNP
allc = sapply(tsts, chi.squared) # matrix with SNPs as rows
savec = colnames(allc)
colnames(allc)=paste0(savec, "_obs")
mcols(varrd) = cbind(mcols(varrd), DataFrame(allc))
pnames = paste0("permScore_", 1:nperm)
for (i in 1:nperm) {
allps = sapply( perms[[i]], chi.squared )
colnames(allps) = paste0(savec, "_permScore_", i)
mcols(varrd) = cbind(mcols(varrd), DataFrame(allps))
}
varrd$snp = names(varrd)
varrd$MAF = as.numeric(mafs[varrd$snp])
varrd$z.HWE = as.numeric(hwez[varrd$snp])
varrd$probeid = as.character(varrd$paramRangeID)
metadata(varrd)$sessInfo = sessionInfo()
metadata(varrd)$init.Random.seed = iniSeed
metadata(varrd)$dimSummex = dim(summex)
metadata(varrd)$rowRangesSummex = rowRanges(summex) # should be small
metadata(varrd)$vcf.tf = vcf.tf # should be small
metadata(varrd)$vcfHeader = vh # should be small
metadata(varrd)$dimliteGT = dim(liteGT)
metadata(varrd)$theCall = thecall
rm(liteGT)
# names(varrd) = NULL
# dropping distance calcs as they can be done post hoc with metadata
# snpl = start(varrd)
# gstart = abs(start(summex[varrd$probeid,]))
# gend = abs(end(summex[varrd$probeid,]))
#
# dists = pmin(abs(snpl-gstart), abs(snpl-gend))
# dists[ which((snpl >= gstart) & (snpl <= gend))] = 0
# varrd$mindist = dists
varrd
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.