Nothing
##' @title Visualization of Ranked gRNA Abundances by Replicate
##' @description This function median scales and log2 transforms the raw gRNA count data contained in an ExpressionSet,
##' and then plots the ordered expression values within each replicate. The curve colors are assigned based on a user-
##' specified column of the pData contained in the ExpressionSet. Optionally, this function can plot the location of Nontargeting control
##' guides (or any guides, really) within the distribution.
##' @param eset An ExpressionSet object containing, at minimum, count data accessible by exprs() and some phenoData.
##' @param sampleKey A sample key, supplied as a (possibly ordered) factor linking the samples to experimental
##' variables. The \code{names} attribute should exactly match those present in \code{eset}, and the control set
##' is assumed to be the first \code{level}.
##' @param annotation An annotation dataframe indicating the nontargeting controls in the geneID column.
##' @param geneSymb The \code{geneSymbol} identifier(s) in \code{annotation} that corresponds to gRNAs to be plotted on the curves.
##' If the provided value is not present in the \code{geneSymbol}, nontargeting controls will be plotted instead.
##' @param lib.size An optional vector of voom-appropriate library size adjustment factors, usually calculated with \code{\link[edgeR]{calcNormFactors}}
##' and transformed to reflect the appropriate library size. These adjustment factors are interpreted as the total library sizes for each sample,
##' and if absent will be extrapolated from the columnwise count sums of the \code{exprs} slot of the \code{eset}.
##' @return A waterfall plot as specified, on the default device.
##' @author Russell Bainer
##' @examples
##' data('es')
##' data('ann')
##'
##' #Build the sample key
##' library(Biobase)
##' sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
##' names(sk) <- row.names(pData(es))
##'
##' ct.gRNARankByReplicate(es, sk, ann, 'Ripk3')
##' @export
ct.gRNARankByReplicate <- function(eset, sampleKey, annotation = NULL, geneSymb = NULL, lib.size = NULL){
#current.graphic.params <- par(no.readonly = TRUE)
#on.exit(suppressWarnings(par(current.graphic.params)))
if(!methods::is(eset, "ExpressionSet")) {
stop(paste(deparse(substitute(eset)), "must be an ExpressionSet."))
}
if (is.null(sampleKey)) {
sampleKey <- as.factor(colnames(eset))
names(sampleKey) <- sampleKey
} else {
ct.inputCheck(sampleKey, eset)
sampleKey <- sampleKey[order(sampleKey)]
}
counts <- exprs(eset)
if (is.null(lib.size)){
lib.size <- colSums(counts)
}else if(!is.numeric(lib.size) | length(lib.size) != ncol(counts)){
stop('If specified, lib.size must be a numeric vector of the same
length as the number of samples in the eset.')
}
#Convert to CPM
e.dat <- t(log2(t(counts + 0.5)/(lib.size + 1) * 1e+06))
y <- range(e.dat)
x <- c(1, nrow(e.dat))
if(is.null(annotation) | is.null(geneSymb)){
plottitle <- ''
} else if(geneSymb %in% annotation$geneSymbol){
plottitle <- geneSymb
} else {
plottitle <- "Nontargeting Controls"
}
plot(x[1], y[1],
xlim = x, ylim = y,
xlab = "gRNA Abundance Rank", ylab = "Log2 Counts",
pch = NA,
main = plottitle)
colors <- colorRampPalette(c("blue", "red"), alpha = TRUE)(length(levels(sampleKey)))
colors <- gsub("FF$", "99", colors, perl = TRUE)
invisible(lapply(seq_len(ncol(e.dat)),
function(x){lines(seq_len(nrow(e.dat)),
sort(e.dat[,names(sampleKey)[x]],
decreasing = TRUE),
col = colors[as.numeric(sampleKey)[x]])}
)
)
#Add the NTC locations if requested.
if(!is.null(geneSymb)){
if(is.null(annotation) | !("geneSymbol" %in% names(annotation))){
stop("An annotation dataframe must be supplied if geneSymb is not NULL.")
}
annotation <- ct.prepareAnnotation(annotation, eset, throw.error = FALSE)
if(any(geneSymb %in% annotation$geneSymbol)){
ntc <- row.names(annotation)[annotation$geneSymbol %in% geneSymb]
} else {
ntc <- row.names(annotation)[(annotation$geneSymbol %in% "NoTarget")]
}
if(length(ntc) == 0){
stop('No suitable elements are present in the supplied annotation file.
Please specify a geneSymbol if you want to display individual guides.')
}
#make a table of the ntc locations and ranks
ntc.ranks <- (apply(e.dat, 2, rank))
ntc.ranks <- ntc.ranks[ntc,]
ntc.ranks <- nrow(e.dat) - ntc.ranks
ntc.dat <- e.dat[ntc,]
rimcolors <- colorRampPalette(c("black", "blue", "green", "red", "yellow", "white"))(nrow(ntc.dat))
invisible(lapply(seq_len(ncol(ntc.dat)),
function(x){points(ntc.ranks[,names(sampleKey)[x]],
ntc.dat[,names(sampleKey)[x]],
bg = rimcolors,
col = colors[as.numeric(sampleKey[x])],
pch = 23, lwd = 4)
}
)
)
}
legend("topright", legend = levels(sampleKey), fill = colors)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.