Nothing
test_zScores <- function() {
checkEqualsNumeric(zScores(1),0)
checkEqualsNumeric(zScores(0),zScores(.Machine$double.xmin))
}
test_camera <- function() {
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
## random score matrix
y <- matrix(rnorm(1000*6),1000,6, dimnames=list(featureNames(gCMAPData), 1:6))
predictor <- c( rep("Control", 3), rep("Case", 3))
res <- camera_score(y, gene.set.collection, predictor = predictor)
checkTrue( inherits(res, "CMAPResults"))
}
test_SignedGeneSet <- function() {
gene.ids <- letters[1:10]
gene.signs <- rep(c("up","down"), each=5)
s <- SignedGeneSet(gene.ids, geneSign=gene.signs, setName="set1")
checkTrue( inherits(s, "GeneSet"))
checkEquals( as.character( geneSign(s)), rep(c("up","down"), each=5) )
}
test_connectivity <- function() {
data(gCMAPData)
## induce CMAPCollection from z-scores
sets <- induceCMAPCollection(gCMAPData, "z", lower=-3, higher=3)
res <- connectivity_score(gCMAPData[,1], sets, element="z")
checkTrue( inherits(res, "CMAPResults"))
}
test_fisher <- function() {
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
universe = featureNames(gCMAPData)
res <- fisher_score(gene.set.collection[,1], gene.set.collection, universe = universe)
checkTrue( inherits(res, "CMAPResults"))
checkEqualsNumeric( res@data$LOR[1], Inf)
}
test_mgsa <- function() {
if( suppressWarnings(require("mgsa", quietly=TRUE, character.only=TRUE))){
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z",
higher=2, lower=-2)
universe = featureNames(gCMAPData)
res <- mgsa_score(gene.set.collection[,2],
gene.set.collection,
universe = universe)
checkTrue( inherits(res, "CMAPResults"), msg="mgsa_score did not produce a CMAPResults object.")
checkTrue( as.character(set( res)[1]) == sampleNames( gene.set.collection[,2]), msg= "mgsa_score did not identify the correct self-self match.")
} else {
message("Skipped test 'test_mgsa' because the mgsa package is not available on this system.")
}
}
test_geneIndex <- function() {
data(gCMAPData, package="gCMAP")
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
gene.ids <- geneIds(gene.set.collection[,2]) ## geneIds of the second set
res <- geneIndex(gene.set.collection, gene.ids)
checkTrue( inherits(res, "list"))
checkEqualsNumeric( length(res),3)
checkEquals( res[[3]], c(4,10,20,32,43,50))
}
test_generateNChannelSet <- function() {
data("sample.ExpressionSet") ## from Biobase
es.list <- list( sample.ExpressionSet[,1:4], sample.ExpressionSet[,5:8], sample.ExpressionSet[,9:12])
names(es.list) <- paste( "Instance", 1:3, sep=".")
de <- generate_gCMAP_NChannelSet(
es.list,
1:3,
platform.annotation = annotation(es.list[[1]]),
control_perturb_col="type",
control="Control",
perturb="Case")
checkTrue( inherits(de, "NChannelSet"))
checkEquals( channelNames(de), c("exprs", "log_fc", "p", "z"))
}
test_gsealm_jg <- function() {
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
profile <- assayDataElement(gCMAPData, "z")[,1]
gsealm_jg_score(profile, gene.set.collection)
res <- gsealm_jg_score(assayDataElement(gCMAPData, "z")[,1], gene.set.collection)
checkTrue( inherits(res, "CMAPResults"))
checkEqualsNumeric( padj( res )[1], 0)
}
test_mapNmerge <- function() {
if(suppressWarnings(require("hgu95av2.db", quietly=TRUE, character.only=TRUE))){
data(sample.ExpressionSet) ## from Biobase
entrez <- mapNmerge(sample.ExpressionSet)
checkTrue( inherits( entrez, "ExpressionSet"))
checkEqualsNumeric( nrow( entrez), 290, tolerance=0.1 )
checkEqualsNumeric( ncol( entrez), 26, tolerance=0.1 )
} else {
TRUE
}
}
test_minSetSize <- function() {
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
res <- minSetSize(gene.set.collection, min.members=100)
checkTrue( inherits( res, "CMAPCollection"))
checkEqualsNumeric( ncol( res ), 1)
checkEqualsNumeric( nrow( res ), 1000)
}
test_mroast <- function() {
set.seed(123)
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
y <- matrix(rnorm(1000*6),1000,6, dimnames=list(featureNames(gCMAPData), 1:6))
predictor <- c( rep("Control", 3), rep("Case", 3))
res <- mroast_score(y, gene.set.collection, predictor = predictor)
checkTrue( inherits( res, "CMAPResults"))
}
test_romer <- function() {
set.seed(123)
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
y <- matrix(rnorm(1000*6),1000,6, dimnames=list(featureNames(gCMAPData), 1:6))
predictor <- c( rep("Control", 3), rep("Case", 3))
res <- romer_score(y, gene.set.collection, predictor = predictor)
checkTrue( inherits( res, "CMAPResults"))
}
test_wilcox <- function() {
data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
profile <- assayDataElement(gCMAPData[,1], "z")
res <- wilcox_score(profile, gene.set.collection)
checkTrue( inherits( res, "CMAPResults"))
checkEqualsNumeric( pval( res )[1], 0, tolerance=1e-100)
}
test_signedRankSum <- function() {
genes.up <- c(1:10)
genes.down <- c(21:30)
set.seed(123)
scores <- matrix(rnorm(200), ncol=2)
## the first gene set receives increased /
## decreased scores in the first experiment
scores[genes.up,1] <- scores[genes.up ,1] + 1
scores[genes.down,1] <- scores[genes.down,1] - 1
## significantly greater
res <- signedRankSumTest( statistics = scores[,1],
index.up = genes.up,
index.down = genes.down)
checkEqualsNumeric( res["p"], 7.169693e-08, tolerance=1e-6)
## not signficant
res <- signedRankSumTest( statistics = scores[,2],
index.up = genes.up,
index.down = genes.down)
checkTrue( res["p"] > 0.05)
}
test_featureScores <- function() {
data(gCMAPData)
sets <- induceCMAPCollection(gCMAPData, "z", higher=-2, lower=2)
res <- featureScores(sets, gCMAPData)
checkTrue( length(res) == 3, "one matrix per data column is retrieved")
res <- res[[1]][,1] ## vector for first data column
checkTrue( all( res == assayDataElement(gCMAPData, "z")[names(res),1]), "correct scores were extracted")
}
test_mapIdentifiers <- function(){
if(suppressWarnings(require("org.Hs.eg.db", quietly=TRUE, character.only=TRUE))){
gene.ids <- c("TP53", "GAPDH")
gene.signs <- c("up","down")
s <- SignedGeneSet(gene.ids, geneSign=gene.signs, setName="set1", geneIdType=SymbolIdentifier("org.Hs.eg"))
checkTrue( identical( s, mapIdentifiers( s, SymbolIdentifier()) ), "does not try to convert geneIdTypes into themselves.")
checkTrue( length( geneIds( mapIdentifiers( s, EntrezIdentifier()) ) ) == 2, "returned two EntrezIds for TP53 and GAPDH." )
} else {
checkTrue( TRUE, "noticed that annotation package org.Hs.eg.db is not available and skipped this test.")
}
}
test_mergeCMAPs <- function() {
require(Biobase)
data(sample.ExpressionSet)
y <- sample.ExpressionSet
sampleNames( y ) <- paste( sampleNames( y ), "y", sep=".")
m <- mergeCMAPs( sample.ExpressionSet, y )
checkEqualsNumeric( 2*ncol(sample.ExpressionSet), ncol(m))
}
test_splitPerturbation <- function() {
require(Biobase)
data( sample.ExpressionSet )
eset.list <- splitPerturbations( eset=sample.ExpressionSet,
factor.of.interest="type",
control="Control",
controlled.factors="sex",
ignore.factors="score",
prefix=""
)
checkTrue( class( eset.list ) == "list", msg="splitPerturbation did not return a list.")
checkTrue( length( eset.list) == 2, msg="splitPerturbation did not identify two constrasts")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.