Nothing
frmaFeatureSet <- function(object, background, normalize, summarize, target, input.vecs, output.param, verbose){
if(background == "rma"){
if(verbose) message("Background Correcting ...\n")
object <- backgroundCorrect(object, verbose=verbose)
}
featureInfo <- getFidProbeset(object)
pmi <- featureInfo[["fid"]]
pns <- as.character(featureInfo[["fsetid"]])
pms <- exprs(object)[pmi,, drop=FALSE]
if(normalize == "quantile"){
if(verbose) message("Normalizing ...\n")
pms <- normalize.quantiles.use.target(pms, input.vecs$normVec)
}
## first summarize at the probeset-level
if(verbose) message("Summarizing...\n")
pms <- log2(pms)
if(summarize == "average"){
exprs <- subColSummarizeAvg((pms-input.vecs$probeVec), pns)
weights <- NULL
stderr <- NULL
}
if(summarize %in% c("median","median_polish")){
if(summarize == "median_polish") message("Note: median and median_polish summarization methods are identical in fRMA.\n")
exprs <- subColSummarizeMedian((pms-input.vecs$probeVec), pns)
weights <- NULL
stderr <- NULL
}
if(summarize == "weighted_average"){
w <- 1/(input.vecs$probeVarWithin + input.vecs$probeVarBetween)
if(any(input.vecs$probeVarWithin==0) | any(input.vecs$probeVarBetween==0)) message("Either probeVarWithin or probeVarBetween is 0 for some probes -- setting corresponding weights to 1")
w[w==Inf] <- 1
exprs <- subColSummarizeAvg((pms-input.vecs$probeVec)*w, pns)
W <- as.vector(rowsum(w, pns, reorder=FALSE))
exprs <- (exprs/W)*as.vector(rowsum(rep(1,length(pns)),pns,reorder=FALSE))
weights <- NULL
stderr <- NULL
}
if(summarize == "robust_weighted_average"){
w <- 1/(input.vecs$probeVarWithin + input.vecs$probeVarBetween)
if(any(input.vecs$probeVarWithin==0) | any(input.vecs$probeVarBetween==0)) message("Either probeVarWithin or probeVarBetween is 0 for some probes -- setting corresponding weights to 1")
w[w==Inf] <- 1
N <- 1:dim(pms)[1]
S <- split(N, pns)
fit <- lapply(1:length(S), function(i) {
s <- S[[i]]
rwaFit2(pms[s,, drop=FALSE], w[s], input.vecs$probeVec[s], input.vecs$probesetSD[i])
})
exprs <- matrix(unlist(lapply(fit, function(x) x$Estimates)), ncol=ncol(pms), byrow=TRUE)
rownames(exprs) <- names(S)
colnames(exprs) <- sampleNames(object)
if("weights" %in% output.param){
weights <- matrix(unlist(lapply(fit, function(x) x$Weights)), ncol=ncol(pms), byrow=TRUE)
rownames(weights) <- pmi
colnames(weights) <- sampleNames(object)
} else weights <- NULL
stderr <- matrix(unlist(lapply(fit, function(x) x$StdErrors)), ncol=ncol(pms), byrow=TRUE)
rownames(stderr) <- names(S)
colnames(stderr) <- sampleNames(object)
}
## if selected, use the probeset-level summaries to summarize to another level
if(target!="probeset"){
if(target=="core"){
featureInfo <- getFidMetaProbesetCore(object)
exonvec <- input.vecs$probeVecCore
map <- input.vecs$mapCore
}
if(target=="full"){
featureInfo <- getFidMetaProbesetFull(object)
exonvec <- input.vecs$probeVecFull
map <- input.vecs$mapFull
}
if(target=="extended"){
featureInfo <- getFidMetaProbesetExtended(object)
exonvec <- input.vecs$probeVecExt
map <- input.vecs$mapExt
}
exprs.tmp <- exprs[match(map[,2],rownames(exprs)),,drop=FALSE]
pns <- map[,1]
if(summarize == "average" | summarize == "weighted_average"){
exprs <- subColSummarizeAvg(exprs.tmp - exonvec, pns)
weights <- NULL
stderr <- NULL
}
if(summarize %in% c("median","median_polish")){
exprs <- subColSummarizeMedian(exprs.tmp - exonvec, pns)
weights <- NULL
stderr <- NULL
}
if(summarize == "robust_weighted_average"){
N <- 1:dim(exprs.tmp)[1]
S <- split(N, pns)
fit <- lapply(1:length(S), function(i) {
s <- S[[i]]
evec.tmp <- exonvec[s]
evec.tmp[1] <- evec.tmp[1]-sum(evec.tmp)
rcModelPLM(exprs.tmp[s,, drop=FALSE], evec.tmp)
})
names(fit) <- unique(pns)
exprs <- matrix(unlist(lapply(fit, function(x) x$Estimates)), ncol=ncol(exprs.tmp), byrow=TRUE)
rownames(exprs) <- names(fit)
colnames(exprs) <- colnames(exprs.tmp)
if("weights" %in% output.param){
weights <- matrix(unlist(lapply(fit, function(x) x$Weights)), ncol=ncol(exprs.tmp), byrow=TRUE)
rownames(weights) <- pns
colnames(weights) <- sampleNames(object)
} else weights <- NULL
stderr <- matrix(unlist(lapply(fit, function(x) x$StdErrors)), ncol=ncol(exprs.tmp), byrow=TRUE)
rownames(stderr) <- names(fit)
colnames(stderr) <- sampleNames(object)
}
if("residuals" %in% output.param){
residuals <- apply(exprs,2,function(x) rep(x, table(pns)))
residuals <- (exprs.tmp - exonvec) - residuals
rownames(residuals) <- pns
colnames(residuals) <- sampleNames(object)
} else residuals <- NULL
} else {
if("residuals" %in% output.param){
residuals <- apply(exprs,2,function(x) rep(x, table(pns)))
residuals <- (pms-input.vecs$probeVec) - residuals
rownames(residuals) <- pns
colnames(residuals) <- sampleNames(object)
} else residuals <- NULL
}
colnames(exprs) <- sampleNames(object)
return(list(exprs=exprs, stderr=stderr, weights=weights, residuals=residuals, gammas=NULL))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.