write.gatingML: Function to write a Gating-ML XML file based on gating and...

Description Usage Arguments Details Author(s) References See Also Examples

View source: R/writeGatingML.R

Description

This function saves gating and transformation objects stored in an R environment to a Gating-ML 2.0 XML file. The objects expected and supported in the R environment are those that can normally be created by the read.gatingML function when a Gating-ML 2.0 XML file is read.

Usage

1
  write.gatingML(flowEnv, file = NULL)

Arguments

flowEnv

The R environment that is being searched for gating objects and transformations

file

The name of the output Gating-ML XML file. The standard output will be used if file is NULL.

Details

The Gating-ML specification has been developed as an interchange format for the description of gates relevant to a flow cytometry experiment. Presently, flowUtils can read Gating-ML versions 1.5 and 2.0 of the specification (see read.gatingML). Gating-ML version 2.0 only is being used when saving Gating-ML.

Author(s)

Spidlen, J.

References

Spidlen J, ISAC DSTF, Brinkman RR. 2014.
Gating-ML 2.0. International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry.
http://flowcyt.sf.net/gating/20141009.pdf
http://flowcyt.sf.net/gating/20141009.full.zip

See Also

read.gatingML

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
library("flowCore")

#################################################################
# Read a Gating-ML file and write the objects back in Gating-ML #
#################################################################
flowEnv <- new.env()
gateFile <- system.file("extdata/Gml2/Gating-MLFiles", 
  "gates1.xml", package="gatingMLData")
read.gatingML(gateFile, flowEnv)
ls(flowEnv)
write.gatingML(flowEnv)

################################################
# Create a quad gate and write it to Gating-ML #
################################################
flowEnv=new.env()
myQuad <- quadGate(filterId = "myQuad", "FSC-A" = 15000, 
  "SSC-A" = 16000)
flowEnv[['myQuad']] <- myQuad
write.gatingML(flowEnv)
##############################################
# If we wanted the output to a file instead: #
##############################################
gatingOutputFile <- tempfile(fileext=".gating-ml2.xml")
write.gatingML(flowEnv, gatingOutputFile)


##################################################
# Again a quad gate, but now adding compensation #
##################################################
flowEnv=new.env()
myCompQuad <- quadGate(filterId = "myCompQuad", "PE-A" = 100, 
  "PerCP-Cy5-5-A" = 200)
compPars = list(
  compensatedParameter(parameters="PE-A", spillRefId="SpillFromFCS", 
    transformationId=paste("PE-A", "_compensated_according_to_FCS", 
    sep=""), searchEnv=flowEnv),
  compensatedParameter(parameters="PerCP-Cy5-5-A", spillRefId="SpillFromFCS", 
    transformationId=paste("PerCP-Cy5-5-A", "_compensated_according_to_FCS", 
    sep=""), searchEnv=flowEnv)
)
myCompQuad@parameters = new("parameters", compPars)
flowEnv[['myCompQuad']] <- myCompQuad
write.gatingML(flowEnv)

##############################################################
# Again a quad gate, but now adding a scaling transformation #
##############################################################
flowEnv=new.env()
myTrQuad <- quadGate(filterId = "myTrQuad", "APC-A" = 0.5, "APC-Cy7-A" = 0.5)
trArcSinH1 = asinhtGml2(parameters = "APC-A", 
  T = 1000, M = 4.5, A = 0, transformationId="trArcSinH1")
trLogicle1 = logicletGml2(parameters = "APC-Cy7-A", 
  T = 1000, W = 0.5, M = 4.5, A = 0, transformationId="trLogicle1")
flowEnv[['trArcSinH1']] <- trArcSinH1
flowEnv[['trLogicle1']] <- trLogicle1
trPars = list(
  transformReference("trArcSinH1", flowEnv),
  transformReference("trLogicle1", flowEnv)
)
myTrQuad@parameters = new("parameters", trPars)
flowEnv[['myTrQuad']] <- myTrQuad
write.gatingML(flowEnv)

#######################################################################
# Now, we will be adding both scaling transformation and compensation #
# Also demonstrating what happens if 'bad' characters are part of the #
# name                                                                #
#######################################################################
flowEnv=new.env()
myTrCompQuad <- quadGate(filterId = "myTr!Comp Quad", "APC-A" = 0.5, 
  "APC-Cy7-A" = 0.5)
trArcSinH2 = asinhtGml2(parameters = "APC-A", 
  T = 1000, M = 4, A = 0, transformationId="trArcSinH2")
trLogicle2 = logicletGml2(parameters = "APC-Cy7-A", 
  T = 1000, W = 0.3, M = 4.5, A = 0, transformationId="trLogicle2")
trArcSinH2@parameters = compensatedParameter(parameters="APC-A", 
  spillRefId="SpillFromFCS", transformationId=paste("FL3-H", 
  "_compensated_according_to_FCS", sep=""), searchEnv=flowEnv)
trLogicle2@parameters = compensatedParameter(parameters="APC-Cy7-A", 
  spillRefId="SpillFromFCS", transformationId=paste("FL4-H", 
  "_compensated_according_to_FCS", sep=""), searchEnv=flowEnv)
trPars = list(trArcSinH2,trLogicle2)
myTrCompQuad@parameters = new("parameters", trPars)
flowEnv[['myTr!Comp Quad']] <- myTrCompQuad
write.gatingML(flowEnv)

##############################################################
# Creating a rectangle gate on a ratio of two parameters and #
# saving the result to a Gating-ML file.                     #
##############################################################
flowEnv=new.env()
rat1 <- ratio("FSC-A", "SSC-A", transformationId = "rat1")
gate1 <- rectangleGate(filterId="gate1", "rat1"=c(0.8, 1.4))
gate1@parameters = new("parameters", list(rat1))
flowEnv[['gate1']] <- gate1
trArcSinH = asinhtGml2(parameters = "rat2", 
  T = 1000, M = 4.5, A = 0, transformationId="trArcSinH")
rat2 <- ratio("FSC-A", "APC-A", transformationId = "rat2")
trArcSinH@parameters = rat2
gate2 <- rectangleGate(filterId="gate2", "rat2"=c(0.6, 1.3))
gate2@parameters = new("parameters", list(trArcSinH))
flowEnv[['gate2']] <- gate2
write.gatingML(flowEnv)

##########################################################
# Example with an ellipse gate on compensated parameters #
##########################################################
flowEnv <- new.env()
covM <- matrix(c(62.5, 37.5, 37.5, 62.5), nrow = 2, byrow=TRUE)
colnames(covM) <- c("FL1-H", "FL2-H")
compPars <- list(
  compensatedParameter(parameters="FL1-H", spillRefId="SpillFromFCS", 
    transformationId=paste("FL1-H", "_compensated_according_to_FCS", sep=""), 
    searchEnv=flowEnv),
  compensatedParameter(parameters="FL2-H", spillRefId="SpillFromFCS", 
    transformationId=paste("FL2-H", "_compensated_according_to_FCS", sep=""), 
    searchEnv=flowEnv)
)
myEl <- ellipsoidGate(mean=c(12, 16), distance=1, .gate=covM, filterId="myEl")
myEl@parameters <- new("parameters", compPars)
flowEnv[['myEl']] <- myEl
write.gatingML(flowEnv)

##########################################################################
# Creating some Boolean gates and saving the result to a Gating-ML file. #
##########################################################################
flowEnv=new.env()
rg1 <- rectangleGate(filterId="rg1", list("FSC-A"=c(0200, 16000), 
  "SSC-A"=c(0, 34000)))
rg2 <- rectangleGate(filterId="rg2", list("PE-A"=c(100, 8000), 
  "APC-Cy7-A"=c(0, 59000)))
orGate <- new("unionFilter", filterId="orGate", 
  filters=list(rg1, rg2))
flowEnv[['orGate']] <- orGate
andGate <- new("intersectFilter", filterId="andGate", 
  filters=list(rg1, rg2))
flowEnv[['andGate']] <- andGate
notGate <- new("complementFilter", filterId="notGate", 
  filters=list(rg1))
flowEnv[['notGate']] <- notGate
parentGate <- new("subsetFilter", filterId="parentGate", 
  filters=list(rg1, rg2))
flowEnv[['parentGate']] <- parentGate
write.gatingML(flowEnv)
#################################################
# Or if we wanted to write to a file instead... #
#################################################
gatingOutputFile <- tempfile(fileext=".gating-ml2.xml")
write.gatingML(flowEnv, gatingOutputFile)

###########################################################################
# A few of the Gating-ML 1.5 transforms can be converted to Gating-ML 2.0 #
# and therefore be used with the write.gatingML function.                 #
###########################################################################
flowEnv=new.env()
trArcSinHGml1.5 = asinht(parameters = "APC-A", a = 1, b = 1, 
  transformationId="trArcSinHGml1.5")
gateAsinhGml1.5 <- rectangleGate(filterId="gateAsinhGml1.5", 
  "trArcSinHGml1.5"=c(0.3, 4.7))
gateAsinhGml1.5@parameters = new("parameters", list(trArcSinHGml1.5))
flowEnv[['gateAsinhGml1.5']] <- gateAsinhGml1.5
gatingOutputFile <- tempfile(fileext=".gating-ml2.xml")
write.gatingML(flowEnv, gatingOutputFile)

flowUtils documentation built on Nov. 8, 2020, 6:29 p.m.