Nothing
#Sequentially normalize a gating set by normalizing channels at each step of gating
#return a normalized gatingset
#target is the target sample to normalize against
#skip is a list of gate indices for which you want to skip normalization (i.e. dump gates that may be difficult to normalize, or FSC/SSC)
#getNormGateList<-function(x){
# flowCore:::checkClass(x,"GatingSet")
# bfsgates<-lapply(x,function(y)which(sapply(RBGL::bfs(y@tree),function(x)!flowWorkspace:::.isBooleanGate.graphNEL(y,x))))
# bfsgates<-unique(do.call(rbind,bfsgates))
# return(data.frame(gate=flowWorkspace::gs_get_pop_paths(x[[1]], showHidden = TRUE)[bfsgates],index=t(bfsgates)))
#}
plotAllGates<-function(gh,cex=2,gsubset=NULL){
nodes<-RBGL::bfs(gh@tree)
nodes<-nodes[!sapply(nodes,function(x)flowWorkspace:::.isBooleanGate.graphNEL(gh,x))][-1L]
if(is.null(gsubset))
l<-length(nodes)
else{
nodes<-nodes[gsubset]
l<-length(nodes)
}
rs<-floor(sqrt(l))
cs<-l%/%rs
while(rs*cs<l){
if((rs+1)*cs<rs*(cs+1))
rs<-rs+1
else
cs<-cs+1
}
grid<-expand.grid(1:rs,1:cs)
sapply(1:(length(nodes)-1),function(g){
print(flowWorkspace::plotGate(gh,nodes[g],lwd=2,pch='.',cex=cex,main=strsplit(nodes[g],"\\.")[[1]][2]),split=c(grid[g,1],grid[g,2],rs,cs),more=T)
})
print(flowWorkspace::plotGate(gh,nodes[length(nodes)],lwd=2,pch='.',cex=cex,main=strsplit(nodes[length(nodes)],"\\.")[[1]][2]),split=c(grid[length(nodes),1],grid[length(nodes),2],rs,cs),more=F)
}
plotSameGate<-function(gs,cex=2,gsubset=NULL,names=NULL){
if(is.null(gsubset))
stop("Must specify a gate to plot")
l<-length(gs)
rs<-floor(sqrt(l))
cs<-l%/%rs
while(rs*cs<l){
if((rs+1)*cs<rs*(cs+1))
rs<-rs+1
else
cs<-cs+1
}
grid<-expand.grid(1:cs,1:rs)
g2<-NULL;
if(length(gsubset)==2)
g2<-gsubset[2]
g1<-gsubset[1]
if(is.null(names)){
names<-flowWorkspace::sampleNames(gs)
}else if(length(names)!=length(gs)){
stop("names must be same length as gating set")
}
for(i in 1:(length(gs)-1)){
nodes<-flowWorkspace::gs_get_pop_paths(gs[[i]], showHidden = TRUE)
print(flowWorkspace::plotGate(gs[[i]],nodes[g1],lwd=2,pch='.',cex=cex,main=names[i]),split=c(grid[i,1],grid[i,2],cs,rs),more=T)
if(!is.null(g2)){
flowWorkspace::plotGate(gs[[i]],nodes[g2],lwd=2,add=T)
}
}
nodes<-flowWorkspace::gs_get_pop_paths(gs[[length(gs)]], showHidden = TRUE)
print(flowWorkspace::plotGate(gs[[length(gs)]],nodes[g1],lwd=2,pch='.',cex=cex,main=names[length(gs)]),split=c(grid[length(gs),1],grid[length(gs),2],cs,rs),more=F)
if(!is.null(g2)){
flowWorkspace::plotGate(gs[[length(gs)]],nodes[g2],lwd=2,add=T)
}
}
#updateFlowFrameRange<-function(x){
# flowCore:::checkClass(x,"GatingSet")
# nc<-flowWorkspace:::getNcdf(x[[1]]);
# s<-sampleNames(nc)
# sapply(s,function(ss){
# myframe<-nc[[ss]]
# r<-apply(exprs(myframe),2,range)
# pars<-myframe@parameters
# data<-pars@data
# data$minRange<-
# })
#}
comparativeNormalizationPlot<-function(x,y,g,s,g2=NULL){
flowCore:::checkClass(x,"GatingSet")
flowCore:::checkClass(y,"GatingSet")
flowCore:::checkClass(g,"numeric")
flowCore:::checkClass(s,"numeric")
if(g>length(flowWorkspace::gs_get_pop_paths(x[[1]], showHidden = TRUE))){
stop("Gate index out of bounds")
}
if(s>length(x)){
stop("Sample index out of bounds")
}
if(length(x)!=length(y)){
stop("The two gating sets should be of the same size")
}
if(!is.null(g2)){
G2<-flowWorkspace::gh_pop_get_gate(y[[s]],g2)@boundaries
}else{
G2<-NULL
}
par<-flowWorkspace::gs_pop_get_parent(x[[1]],g)
dims <- colnames(gh_pop_get_gate(x[[1]],flowWorkspace::gs_get_pop_paths(x[[1]], showHidden = TRUE)[g])@boundaries)
form<-sapply(dims,function(f)as.formula(paste("~`",f,"`",sep="")))
print(densityplot(form[[1]],flowWorkspace::gs_pop_get_data(x,par),main="Raw"),split=c(1,1,3,2),more=TRUE)
print(densityplot(form[[1]],flowWorkspace::gs_pop_get_data(y,par),main="Normalized"),split=c(1,2,3,2),more=TRUE)
print(densityplot(form[[2]],flowWorkspace::gs_pop_get_data(x,par),main="Raw"),split=c(2,1,3,2),more=TRUE)
print(densityplot(form[[2]],flowWorkspace::gs_pop_get_data(y,par),main="Normalized"),split=c(2,2,3,2),more=TRUE)
print(flowWorkspace::plotGate(x[[s]],g,main="Raw"),split=c(3,1,3,2),more=TRUE)
if(!is.null(G2)){
trellis.focus(highlight=FALSE)
panel.polygon(G2,border="red")
trellis.unfocus()
}
print(flowWorkspace::plotGate(y[[s]],g,main="Normalized"),split=c(3,2,3,2),more=FALSE)
if(!is.null(G2)){
trellis.focus()
panel.polygon(G2,border="red")
trellis.unfocus()
}
}
setMethod("normalize",c("GatingSet","missing"),function(data,x="missing",...){
.normalizeGatingSet(x=data,...)
})
.normalizeGatingSet <- function(x,target=NULL
, populations = NULL
, dims
,nPeaks=list(),h5_dir = tempdir(), minCountThreshold = 500, ...){
# browser()
samples<-sampleNames(x)
valid<-target%in%samples
if(!is.null(target)){
if(!valid){
stop("target ",target," not in the GatingSet")
}
}
#Get all the non-boolean gates, breadth first traversal
#Do a breadth-first traversal
nodes <- gs_get_pop_paths(x[[1]],order="bfs",showHidden = TRUE, path = "auto")
#gate-specific channel list to track normalization
parentgates<-list();
#Initialize master channel list
unnormalized <- colnames(gh_pop_get_data(x[[1]]))
message("cloning the gatingSet...")
x <- gs_clone(x, h5_dir = h5_dir)
#for each gate, grab the dimensions and check if they are normalized.
#Normalize what hasn't been normalized yet, then do the gating.
#Set a target sample by name
for(node in populations){
if(node!="root")
if(!gh_pop_is_bool_gate(x[[1]],node))
{
gate <- gh_pop_get_gate(x[[1]],node)
dims.old <- dims
dims <- intersect(parameters(gate), dims)
if(length(dims)>0)
{
#Data will be subset at gate g (parent) and normalized on dims of i (child)
#keep a list of normalized and unnormalized channels for each parent gate..
#Check the gate being normalized.. make sure 74 is done correctly
message("Normalize ", node)
#Get the PARENT gate (since we'll be gating the data using gate i)
parent <- gs_pop_get_parent(x[[1]], node)
#initialize gate-specific normalization list
if(is.null(parentgates[[as.character(parent)]])){
parentgates[[as.character(parent)]]<-list();
parentgates[[as.character(parent)]]$unnormalized<-unnormalized
parentgates[[as.character(parent)]]$normalized<-NULL
}
#check which dimensions are normalized already
wh.dim<-dims%in%parentgates[[as.character(parent)]]$unnormalized
parentgates[[as.character(parent)]]$normalized<-c(parentgates[[as.character(parent)]]$normalized,dims[wh.dim]);
parentgates[[as.character(parent)]]$unnormalized<-setdiff(parentgates[[as.character(parent)]]$unnormalized,dims)
stains<-dims[wh.dim]
# browser()
if(length(stains)!=0&&gateHasSufficientData(x, parent, minCountThreshold = minCountThreshold, ...))
{
#choose the np element by name
npks <- nPeaks[[node]]
result <- warpSet(x,stains = stains
,node = parent
,target = target
,peakNr = npks
,...)
data_type <- class(result)
if(data_type == "ncdfFlowSet"){
sapply(sampleNames(result),function(s)ncdfFlow::updateIndices(result,s,NA))
gs_cyto_data(x)<-result
}else if(data_type == "flowSet"){
oldfs<-gs_cyto_data(x)
for(j in sampleNames(x)){
inds<-flowWorkspace::gh_pop_get_indices(x[[j]],parent)
oldfs[[j]]@exprs[inds,]<-result[[j]]@exprs
}
gs_cyto_data(x)<-oldfs
}else if(data_type != "cytoset"){
stop("unsupported type: ", result)
}
recompute(x,node);
}
}else
{
message("skip '", node, "' because '", dims.old, "' not used by this gate!")
}
}
}
x
}
#Function to check if each sample at the given gate has enough data to normalize.
#Set the threshold at 500 events for each flowFrame.
gateHasSufficientData<-function(x=NULL,g=NULL,minCountThreshold=500,...){
res <- unlist(flowWorkspace::lapply(x,function(y){
nrow(gh_pop_get_data(y,g))>=minCountThreshold
}))
if(all(res))
return(TRUE)
else
{
warning("not enough events to normalize: ",paste(names(res[!res]),collapse="\n"))
return(FALSE)
}
}
# hierarchy
#})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.