Nothing
#TODO fix formal arguments
landmarkMatrixWithoutFilterResult <- function(data, peaksandregions, parm, border=0.05, peakNr=NULL,
indices=FALSE)
{
##TODO maybe code to organzie the peaksandregions variable should go here..
peaks<-do.call(c,lapply(peaksandregions,function(x)x[[parm]][[1]]))
regions<-do.call(c,lapply(peaksandregions,function(x)x[[parm]][[2]]))
ranges <- fsApply(data, range)
nrPeaks <- table(listLen(peaks))
fnrPeaks <- as.numeric(max(names(which(nrPeaks/sum(nrPeaks) > 0.1))))
if(!is.null(peakNr))
peakNr <- min(as.numeric(names(which.max(nrPeaks)), peakNr))
clustCenters <- if(fnrPeaks>1 && !is.null(peakNr)){
fnrPeaks <- peakNr
apply(matrix(unlist(peaks[(listLen(peaks)==peakNr)]), ncol=peakNr, byrow=T) ,2, mean)
}else fnrPeaks
resRegions <- list()
if(is.na(fnrPeaks))
return(FALSE)
if(fnrPeaks==1){
single <- which(listLen(peaks)==1)
med <- median(unlist(peaks[single]), na.rm=TRUE)
rmed <- apply(t(sapply(regions[single], c)), 2, median, na.rm=TRUE)
resPeaks <- numeric(length(peaks))
resPeaks[single] <- unlist(peaks[single])
resRegions[single] <- regions[single]
resPeaks[-single] <- unlist(sapply(peaks[-single],
function(x) x[which.min(abs(x-med))]))
resRegions[-single] <- mapply(function(x,y) y[which.min(abs(x-med)),,drop=FALSE],
x=peaks[-single],
y=regions[-single], SIMPLIFY=FALSE)
resPeaks[is.na(resPeaks)] <- med
resRegions[is.na(resPeaks)] <- matrix(rmed, ncol=2)
names(resRegions) <- sampleNames(data)
if(!indices){
m <- matrix(resPeaks, ncol=1)
attr(m, "regions") <- resRegions
attr(m, "cdists") <- matrix(0, nrow=length(data), ncol=1,
dimnames=list(sampleNames(data),NULL))
return(m)
}
else
{
return(matrix(1, ncol=1, nrow=length(resPeaks),
dimnames=list(sampleNames(data), NULL)))
}
}
## cluster peaks in k cluster where k is max number of peaks for a sample
mat <- matD <- matrix(nrow=length(peaks), ncol=fnrPeaks)
rownames(mat) <- rownames(matD) <- sampleNames(data)
pvect <- unlist(peaks)
names(pvect) <- rep(names(peaks), listLen(peaks))
sel <- !is.na(pvect)
km <- kmeans(pvect[sel], clustCenters)
km$cluster <- match(km$cluster, order(km$centers))
clusterDist <- numeric(length(km$cluster))
for(i in seq_along(km$cluster))
clusterDist[i] <- abs(pvect[i] - km$centers[km$cluster[i]])
cList <- split(data.frame(cluster=km$cluster, dist=clusterDist,
landmark=pvect[sel], index=unlist(sapply(peaks, seq_along))[sel]),
names(pvect[sel]))
cList <- lapply(cList, function(x) x[order(x$dist),][1:min(nrow(x),
fnrPeaks),])
## put peaks in matrix according to clustering where row=sample and
## col=cluster
for(i in rownames(mat)){
cl <- cList[[i]]
tmp <- matrix(NA, ncol=2, nrow=fnrPeaks)
tmp[cl$cluster,] <- regions[[i]][cl$index,,drop=FALSE]
resRegions[[i]] <- matrix(tmp, ncol=2)
mat[i,cl$cluster] <- if(!indices) cl$landmark else cl$index
matD[i,cl$cluster] <- cl$dist/diff(ranges[[1]][,parm])
}
resRegions <- resRegions[rownames(mat)]
attr(mat, "regions") <- resRegions
attr(mat, "cdists") <- matD
return(mat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.