Nothing
# (copied from feature 1.2.13 to avoid tcltk dependency)
#####################################################################
## Matt Wand's version of binned kernel density derivative estimation
##
## Computes the mth derivative of a binned
## d-variate kernel density estimate based
## on grid counts.
#############################################################
drvkde <- function(x,drv,bandwidth,gridsize,range.x,binned=FALSE,se=TRUE, w)
{
d <- length(drv)
if (d==1) x <- as.matrix(x)
## Rename common variables
h <- bandwidth
tau <- 4 + max(drv)
if (length(h)==1) h <- rep(h,d)
if (missing(gridsize))
if (!binned) ## changes 16/02/2009
{
if (d==1) gridsize <- 401
else if (d==2) gridsize <- rep(151,d)
else if (d==3) gridsize <- rep(51, d)
else if (d==4) gridsize <- rep(21, d)
}
else
{
if (d==1) gridsize <- dim(x)[1]
else gridsize <- dim(x)
}
if(missing(w)) w <- rep(1,nrow(x))
## Bin the data if not already binned
if (missing(range.x))
{
range.x <- list()
for (id in 1:d)
range.x[[id]] <- c(min(x[,id])-tau*h[id],max(x[,id])+tau*h[id])
}
a <- unlist(lapply(range.x,min))
b <- unlist(lapply(range.x,max))
M <- gridsize
gpoints <- list()
for (id in 1:d)
gpoints[[id]] <- seq(a[id],b[id],length=M[id])
if (binned==FALSE)
{
if (d==1) gcounts <- binning(x=x, bgridsize=gridsize, h=h, xmin=a, xmax=b, w=w)$counts
else if (d>1) gcounts <- binning(x=x, bgridsize=gridsize, H=diag(h^2), xmin=a, xmax=b, w=w)$counts
}
else
gcounts <- x
n <- sum(gcounts)
kapmid <- list()
for (id in (1:d))
{
## changes to Lid 13/02/2009
Lid <- max(min(floor(tau*h[id]*(M[id]-1)/(b[id]-a[id])),M[id]),d)
lvecid <- (0:Lid)
facid <- (b[id]-a[id])/(h[id]*(M[id]-1))
argid <- lvecid*facid
kapmid[[id]] <- dnorm(argid)/(h[id]^(drv[id]+1))
hmold0 <- 1
hmold1 <- argid
if (drv[id]==0) hmnew <- 1
if (drv[id]==1) hmnew <- argid
if (drv[id] >= 2)
for (ihm in (2:drv[id]))
{
hmnew <- argid*hmold1 - (ihm-1)*hmold0
hmold0 <- hmold1 # Compute drv[id] degree Hermite polynomial
hmold1 <- hmnew # by recurrence.
}
kapmid[[id]] <- hmnew*kapmid[[id]]*(-1)^drv[id]
}
if (d==1) kappam <- kapmid[[1]]/n
if (d==2) kappam <- outer(kapmid[[1]],kapmid[[2]])/n
if (d==3) kappam <- outer(kapmid[[1]],outer(kapmid[[2]],kapmid[[3]]))/n
if (d==4) kappam <- outer(kapmid[[1]],outer(kapmid[[2]],outer(kapmid[[3]],kapmid[[4]])))/n
if (!any(c(d==1,d==2,d==3,d==4))) stop("only for d=1,2,3,4")
if (d==1)
{
est <- symconv.ks(kappam,gcounts,skewflag=(-1)^drv)
if (se) est.var <- ((symconv.ks((n*kappam)^2,gcounts)/n) - est^2)/(n-1)
}
if (d==2)
{
##est <- ks:::symconv.nd(kappam,gcounts,d=d)
##if (se) est.var <- ((ks:::symconv.nd((n*kappam)^2,gcounts,d=d)/n) - est^2)/(n-1)
est <- symconv2D.ks(kappam,gcounts,skewflag=(-1)^drv)
if (se) est.var <- ((symconv2D.ks((n*kappam)^2,gcounts)/n) - est^2)/(n-1)
}
if (d==3)
{
est <- symconv3D.ks(kappam,gcounts,skewflag=(-1)^drv)
if (se) est.var <- ((symconv3D.ks((n*kappam)^2,gcounts)/n) - est^2)/(n-1)
}
if (d==4)
{
est <- symconv4D.ks(kappam,gcounts,skewflag=(-1)^drv)
if (se) est.var <- ((symconv4D.ks((n*kappam)^2,gcounts)/n) - est^2)/(n-1)
}
if (se)
{
est.var[est.var<0] <- 0
return(list(x.grid=gpoints,est=est,se=sqrt(est.var)))
}
else if (!se)
return(list(x.grid=gpoints,est=est))
}
########################################################################
## Discrete convolution
########################################################################
## Computes the discrete convolution of
## a symmetric or skew-symmetric response
## vector r and a data vector s.
## If r is symmetric then "skewflag"=1.
## If r is skew-symmetric then "skewflag"=-1.
symconv.ks <- function (rr,ss,skewflag = 1)
{
L <- length(rr) - 1
M <- length(ss)
P <- 2^(ceiling(log(M + L)/log(2)))
rp <- rep(0,P)
rp[1:(L+1)] <- rr
if (L>0) rp[(P-L+1):P] <- skewflag*rr[(L+1):2]
sp <- rep(0,P)
sp[1:M] <- ss
R <- fft(rp)
S <- fft(sp)
t <- fft(R * S, TRUE)
return((Re(t)/P)[1:M])
}
symconv2D.ks <- function(rr, ss, skewflag=rep(1,2))
{
L <- dim(rr)-1
M <- dim(ss)
L1 <- L[1]
L2 <- L[2] # find dimensions of r,s
M1 <- M[1]
M2 <- M[2]
P1 <- 2^(ceiling(log(M1+L1)/log(2))) # smallest power of 2 >= M1+L1
P2 <- 2^(ceiling(log(M2+L2)/log(2))) # smallest power of 2 >= M2+L2
rp <- matrix(0,P1,P2)
rp[1:(L1+1),1:(L2+1)] <- rr
if (L1>0)
rp[(P1-L1+1):P1,1:(L2+1)] <- skewflag[1]*rr[(L1+1):2,]
if (L2>0)
rp[1:(L1+1),(P2-L2+1):P2] <- skewflag[2]*rr[,(L2+1):2]
if (L1 > 0 & L2 > 0)
rp[(P1-L1+1):P1,(P2-L2+1):P2] <- prod(skewflag)*rr[(L1+1):2,(L2+1):2]
# wrap around version of rr
sp <- matrix(0,P1,P2)
sp[1:M1,1:M2] <- ss # zero-padded version of ss
RR <- fft(rp) # Obtain FFT's of rr and ss
SS <- fft(sp)
tt <- fft(RR*SS,TRUE) # invert element-wise product of FFT's
return((Re(tt)/(P1*P2))[1:M1,1:M2]) # return normalized truncated tt
}
symconv3D.ks <- function(rr, ss, skewflag=rep(1,3))
{
L <- dim(rr) - 1
M <- dim(ss)
P <- 2^(ceiling(log(M+L)/log(2))) # smallest powers of 2 >= M+L
L1 <- L[1] ; L2 <- L[2] ; L3 <- L[3]
M1 <- M[1] ; M2 <- M[2] ; M3 <- M[3]
P1 <- P[1] ; P2 <- P[2] ; P3 <- P[3]
sf <- skewflag
rp <- array(0,P)
rp[1:(L1+1),1:(L2+1),1:(L3+1)] <- rr
if (L1>0)
rp[(P1-L1+1):P1,1:(L2+1),1:(L3+1)] <- sf[1]*rr[(L1+1):2,1:(L2+1),1:(L3+1)]
if (L2>0)
rp[1:(L1+1),(P2-L2+1):P2,1:(L3+1)] <- sf[2]*rr[1:(L1+1),(L2+1):2,1:(L3+1)]
if (L3>0)
rp[1:(L1+1),1:(L2+1),(P3-L3+1):P3] <- sf[3]*rr[1:(L1+1),1:(L2+1),(L3+1):2]
if (L1>0 & L2>0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,1:(L3+1)] <- sf[1]*sf[2]*rr[(L1+1):2,(L2+1):2,1:(L3+1)]
if (L2>0 & L3>0)
rp[1:(L1+1),(P2-L2+1):P2,(P3-L3+1):P3] <- sf[2]*sf[3]*rr[1:(L1+1),(L2+1):2,(L3+1):2]
if (L1>0 & L3>0)
rp[(P1-L1+1):P1,1:(L2+1),(P3-L3+1):P3] <- sf[1]*sf[3]*rr[(L1+1):2,1:(L2+1),(L3+1):2]
if (L1>0 & L2>0 & L3>0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,(P3-L3+1):P3] <- sf[1]*sf[2]*sf[3]*rr[(L1+1):2,(L2+1):2,(L3+1):2]
sp <- array(0,P)
sp[1:M1,1:M2,1:M3] <- ss # zero-padded version of ss
RR <- fft(rp) # Obtain FFT's of rr and ss
SS <- fft(sp)
tt <- fft(RR*SS,TRUE) # invert element-wise product of FFT's
return((Re(tt)/(P1*P2*P3))[1:M1,1:M2,1:M3]) # return normalized truncated tt
}
symconv4D.ks <- function(rr, ss, skewflag=rep(1,4) , fftflag=rep(TRUE,2))
{
L <- dim(rr) - 1
M <- dim(ss)
P <- 2^(ceiling(log(M+L)/log(2))) # smallest powers of 2 >= M+L
L1 <- L[1] ; L2 <- L[2] ; L3 <- L[3] ; L4 <- L[4]
M1 <- M[1] ; M2 <- M[2] ; M3 <- M[3] ; M4 <- M[4]
P1 <- P[1] ; P2 <- P[2] ; P3 <- P[3] ; P4 <- P[4]
sf <- skewflag
rp <- array(0,P)
rp[1:(L1+1),1:(L2+1),1:(L3+1),1:(L4+1)] <- rr
if (L1>0)
rp[(P1-L1+1):P1,1:(L2+1),1:(L3+1),1:(L4+1)] <- sf[1]*rr[(L1+1):2,1:(L2+1),1:(L3+1),1:(L4+1)]
if (L2>0)
rp[1:(L1+1),(P2-L2+1):P2,1:(L3+1),1:(L4+1)] <- sf[2]*rr[1:(L1+1),(L2+1):2,1:(L3+1),1:(L4+1)]
if (L3>0)
rp[1:(L1+1),1:(L2+1),(P3-L3+1):P3,1:(L4+1)] <- sf[3]*rr[1:(L1+1),1:(L2+1),(L3+1):2,1:(L4+1)]
if (L4>0)
rp[1:(L1+1),1:(L2+1),1:(L3+1),(P4-L4+1):P4] <- sf[4]*rr[1:(L1+1),1:(L2+1),1:(L3+1),(L4+1):2]
if (L1>0 & L2 >0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,1:(L3+1),1:(L4+1)] <- sf[1]*sf[2]*rr[(L1+1):2,(L2+1):2,1:(L3+1),1:(L4+1)]
if (L2>0 & L3>0)
rp[1:(L1+1),(P2-L2+1):P2,(P3-L3+1):P3,1:(L4+1)] <- sf[2]*sf[3]*rr[1:(L1+1),(L2+1):2,(L3+1):2,1:(L4+1)]
if (L3>0 & L4>0)
rp[1:(L1+1),1:(L2+1),(P3-L3+1):P3,(P4-L4+1):P4] <- sf[3]*sf[4]*rr[1:(L1+1),1:(L2+1),(L3+1):2,(L4+1):2]
if (L1>0 & L3>0)
rp[(P1-L1+1):P1,1:(L2+1),(P3-L3+1):P3,1:(L4+1)] <- sf[1]*sf[3]*rr[(L1+1):2,1:(L2+1),(L3+1):2,1:(L4+1)]
if (L2>0 & L4>0)
rp[1:(L1+1),(P2-L2+1):P2,1:(L3+1),(P4-L4+1):P4] <- sf[2]*sf[4]*rr[1:(L1+1),(L2+1):2,1:(L3+1),(L4+1):2]
if (L1>0 & L4>0)
rp[(P1-L1+1):P1,1:(L2+1),1:(L3+1),(P4-L4+1):P4] <- sf[1]*sf[4]*rr[(L1+1):2,1:(L2+1),1:(L3+1),(L4+1):2]
if (L1>0 & L2>0 & L3>0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,(P3-L3+1):P3,1:(L4+1)] <- sf[1]*sf[2]*sf[3]*rr[(L1+1):2,(L2+1):2,(L3+1):2,1:(L4+1)]
if (L1>0 & L2>0 & L4>0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,1:(L3+1),(P4-L4+1):P4] <- sf[1]*sf[2]*sf[4]*rr[(L1+1):2,(L2+1):2,1:(L3+1),(L4+1):2]
if (L2>0 & L3>0 & L4>0)
rp[1:(L1+1),(P2-L2+1):P2,(P3-L3+1):P3,(P4-L4+1):P4] <- sf[2]*sf[3]*sf[4]*rr[1:(L1+1),(L2+1):2,(L3+1):2,(L4+1):2]
if (L1>0 & L2>0 & L3>0 & L4>0)
rp[(P1-L1+1):P1,(P2-L2+1):P2,(P3-L3+1):P3,(P4-L4+1):P4] <- sf[1]*sf[2]*sf[3]*sf[4]*rr[(L1+1):2,(L2+1):2,(L3+1):2,(L4+1):2]
sp <- array(0,P)
sp[1:M1,1:M2,1:M3,1:M4] <- ss # zero-padded version of ss
RR <- fft(rp) # Obtain FFT's of rr and ss
SS <- fft(sp)
tt <- fft(RR*SS,TRUE) # invert element-wise product of FFT's
return((Re(tt)/(P1*P2*P3*P4))[1:M1,1:M2,1:M3,1:M4]) # return normalized truncated tt
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.