Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/helper_functions.R
This function takes a data frame where columns are named based on detectors and extracts a subset of the data frame it by selecting only specified detectors. In addition, the columns will be renamed based on the specified dyes argument.
1 | get_results_for_dyes(dyes, detectors, results)
|
dyes |
A vector of n dye names which shall correspond to the dyes specified in the dyes argument. These will be the column names of the resulting data frame. The detector-dye mapping is done based on the order of values in the two vectors, i.e., the first dye shall correspond to the first detector, etc. |
detectors |
A vector of n detector names which shall correspond to the dyes specified in the dyes argument. These shall correspond to the column names in the input data frame. The detector-dye mapping is done based on the order of values in the two vectors, i.e., the first dye shall correspond to the first detector, etc. |
results |
An input data frame that shall contain columns corresponding to all the different values specified by the detectors vector. |
This function is used to select a subset of columns from a data frame by specifying the columns of interest (detectors). In addition, the columns will be renamed to dyes corresponding to those detectors.
A data frame with n columns, column names corresponding to the specified dyes and rows/values extracted from the input data frame.
Wayne Moore, Faysal El Khettabi, Josef Spidlen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | library(flowCore)
library(xlsx)
library(flowQBData)
inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
test_column <- 13
test_row <- 14
folder <- xlsx[[test_column]][[test_row]]
beads_file_name <- xlsx[[test_column]][[test_row+1]]
scatter_channels <- c(
xlsx[[test_column]][[test_row+2]],
xlsx[[test_column]][[test_row+3]])
fcs_path <- system.file("extdata",
instrument_folder, folder, beads_file_name, package="flowQBData")
results <- calc_mean_sd_duke(fcs_path, scatter_channels, ignore_channels)
channel_cols <- 3:12
dye_row <- 11
detector_row <- 13
dyes <- as.character(xlsx[dye_row,channel_cols])
detectors <- as.character(xlsx[detector_row,channel_cols])
dye_results <- get_results_for_dyes(dyes, detectors, results)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.