Nothing
######
## NMDS plot of cell numbers / normalized cell numbers
######
setMethod("nmds", signature=(x="data.frame"),
definition = function(x,distance="bray",autotransform=FALSE,zerodist="add",group,main="",type="p",cex=0.6,pos=4,shrink=TRUE,legend_pos="topleft",pch=1,col="black",abiotic,p.max=0.05,col_abiotic="magenta",verbose=FALSE,...) {
newlist<-list()
mds.out <- metaMDS(x, distance=distance, autotransform=autotransform, zerodist=zerodist,...) # performs nonmetric multidimensional scaling
print(rownames(mds.out$points))
newlist$mds.out<-mds.out
plot(mds.out, type="n",main=main) # plot results
text(mds.out,cex=cex,pos=pos,shrink=shrink,...) # data label as text
if(missing(group)) # check for group file
points(mds.out, type=type,pch=pch,col=col,...) # add points
else{
color<-group[,1]
points(mds.out,type=type, col=color , pch=as.numeric(color))
legend(x=legend_pos, legend=unique(color), pch=as.numeric(unique(color)), col=as.numeric(unique(color)))
ordihull(mds.out, groups=color, lty=2, col="darkgrey")
}
if(!missing(abiotic)){ # check for abiotic file
ef<-envfit(mds.out, abiotic, permutation=999) # calculates the relevant environmental parameters for the nMDS #result based on 999 Monte-Carlo permutations
plot (ef,cex=cex,p.max=p.max, col=col_abiotic) # plots the most relevant environmental parameters (with a p.max <=0.05) into the MDS
newlist$ef<-ef
}
if(verbose)
return(newlist)
})
setMethod("nmds", signature=(x="matrix"),
definition = function(x,distance="bray",autotransform=FALSE,zerodist="add",group,main="",type="p",cex=0.6,pos=4,shrink=TRUE,legend_pos="topleft",pch=1,col="black",abiotic,p.max=0.05,col_abiotic="magenta",verbose=FALSE,...) {
newlist<-list()
mds.out <- metaMDS(x, distance=distance, autotransform=autotransform, zerodist=zerodist,...) # performs nonmetric multidimensional scaling
print(rownames(mds.out$points))
newlist$mds.out<-mds.out
plot(mds.out, type="n",main=main) # plot results
text(mds.out,cex=cex,pos=pos,shrink=shrink,...) # data label as text
if(missing(group)) # check for group file
points(mds.out, type=type,pch=pch,col=col,...) # add points
else{
color<-group[,1]
points(mds.out,type=type, col=color , pch=as.numeric(color))
legend(x=legend_pos, legend=unique(color), pch=as.numeric(unique(color)), col=as.numeric(unique(color)))
ordihull(mds.out, groups=color, lty=2, col="darkgrey")
}
if(!missing(abiotic)){ # check for abiotic file
ef<-envfit(mds.out, abiotic, permutation=999) # calculates the relevant environmental parameters for the nMDS #result based on 999 Monte-Carlo permutations
plot (ef,cex=cex,p.max=p.max, col=col_abiotic) # plots the most relevant environmental parameters (with a p.max <=0.05) into the MDS
newlist$ef<-ef
}
if(verbose)
return(newlist)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.