Nothing
testDECount <- function(sampleInfo, exDat, cnt = cnt, info = info){
# Pull info from exDat
erccInfo <- exDat$erccInfo
plotInfo <- exDat$plotInfo
filenameRoot = sampleInfo$filenameRoot
legendLabels = sampleInfo$legendLabels
FCcode = erccInfo$FCcode
idCols = exDat$idColsAdj
r_m.mn = exDat$Results$r_m.res$r_m.mn
repNormFactor = sampleInfo$repNormFactor
normFactor <- exDat$normFactor
sample1 = exDat$sampleNames[1]
sample2 = exDat$sampleNames[2]
colScale <- plotInfo$colScale
fillScale <- plotInfo$fillScale
## Organize the count table
cnt = unique(cnt)
Features = make.names(cnt$Feature,unique=TRUE)
Features = gsub(".","-", Features, fixed = TRUE)
rownames(cnt)<-Features
cnt<-as.matrix(cnt[,-1])
if(odd(ncol(cnt))) stop(paste("Uneven number of replicates for",
"the two sample types"))
colnames(cnt)<-paste(rep(c(sample1,sample2),
each=ncol(cnt)/2),
c(1:(ncol(cnt)/2),1:(ncol(cnt)/2)),sep="")
## Get ERCC names
ERCC<-rownames(cnt[substr(rownames(cnt),1,5)=="ERCC-",])
## Specify Sample (A or B)
trt<-rep(1:2,each=ncol(cnt)/2)
## Get design.list for edgeR
design.list<-list(trt,rep(1,ncol(cnt)))
## Compute offset (e.g. total counts, 75% quantile, TMM, etc)
if(is.null(normFactor)){
log.offset <- c(rep(0,ncol(cnt)))
}else{
log.offset<- log(normFactor)
}
cat("\nShow log.offset\n")
cat(log.offset,"\n")
ERCC.FC = idCols[c(1,4)];rownames(ERCC.FC)<-ERCC.FC[,1]
ERCC.FC$NumRatio <- NA
FCcode$Ratio <- as.factor(FCcode$Ratio)
for (i in 1:nlevels(FCcode$Ratio)){
print(i)
ERCC.FC$NumRatio[which(ERCC.FC$Ratio ==
FCcode$Ratio[i])]=FCcode$FC[i]
}
ERCC.Ratio = ERCC.FC[c(1,2)]
ERCC.FC = ERCC.FC[-c(2)]
group <- as.factor(trt)
d <- DGEList(counts=cnt,group=group)
# use log.offset for the library size
d$samples$lib.size <- exp(log.offset)
#Dispersion trend
design <- model.matrix(~group)
d1 <- estimateGLMCommonDisp(d,design,verbose=TRUE)
d1 <- estimateGLMTrendedDisp(d1,design)
d1 <- estimateGLMTagwiseDisp(d1,design)
#######################################################
### Simulate ERCC data from negative binomial fit ####
### (to be used for sim-based LODR) ####
#######################################################
# Define function simcnt.lodr
simcnt.lodr<-function(cnt,disp,trt,fold,log.offset){
#### 'cnt' is the matrix of counts for endogenous genes
#### 'disp' is the central trend fitted to the estimated dispersions
#### (vs. expression)
#### 'trt' is a vector specifying treatments for each column in 'cnt'
#### 'fold' is the desired fold change (trt 2/trt 1)
#### 'log.offset' is used to account for differences in library size
### mimick every 797th gene (roughly), when sorted by total count
sim.ind<-round(nrow(cnt)*c(1:49)/50)
norm.cnt<-t(t(cnt)/exp(log.offset))
sim.mn<-matrix(sort(rowMeans(norm.cnt))[sim.ind],
nrow=length(sim.ind), ncol=ncol(cnt))
sim.mn<-sim.mn*2/(1+fold)
sim.mn[,trt==2]<-sim.mn[,trt==2]*fold
sim.mn<-t(t(sim.mn)*exp(log.offset))
sim.disp<-disp[order(rowMeans(norm.cnt))][sim.ind]
size<-matrix(1/sim.disp,length(sim.disp),ncol(cnt))
simcnt<-matrix(rnbinom(length(sim.disp)*ncol(cnt),
mu=sim.mn,size=size),length(sim.disp),ncol(cnt))
rownames(simcnt)<-paste("Sim",fold,"Fold",1:length(sim.ind),sep="")
return(simcnt)
}
#### Simulate data for each of the fold changes used in the ERCCs
simcnt<-NULL
for(fold in unique(ERCC.FC[!is.na(ERCC.FC[,2]),2])){
simcnt<-rbind(simcnt,simcnt.lodr(cnt,disp=d1$trended.dispersion,
trt=trt,fold=fold,
log.offset=log.offset))
}
##### Analyze combination of observed and simulated data with edgeR
group <- as.factor(trt)
d2 <- DGEList(counts=rbind(cnt,simcnt),group=group)
d2$samples$lib.size <- exp(log.offset)
design <- model.matrix(~group)
d2 <- estimateGLMCommonDisp(d2,design,verbose=TRUE)
d2 <- estimateGLMTrendedDisp(d2,design)
d2 <- estimateGLMTagwiseDisp(d2,design)
NBdisp<-d2$tagwise.dispersion
names(NBdisp)<-rownames(rbind(cnt,simcnt))
NBdisptrend<-d2$trended.dispersion
names(NBdisptrend)<-rownames(rbind(cnt,simcnt))
use.fit <- glmQLFit(d2, design)
qlf.res <- glmQLFTest(use.fit)
use.res <- qlf.res
### Collect results for simulated data, to be passed along to LODR function
Feature <- row.names(simcnt)
MnSignal <- as.numeric(rowMeans(simcnt))
Pval <- use.res$table$PValue[-(1:nrow(cnt))]
LogPval <- log10(use.res$table$PValue)[-(1:nrow(cnt))]
F.stat <- use.res$table$F[-(1:nrow(cnt))]
Fold <- rep(unique(ERCC.FC[!is.na(ERCC.FC[,2]),2]),each=49)
sim.pval.res <- data.frame(Feature, MnSignal, Pval, LogPval, F.stat, Fold)
colnames(sim.pval.res)<-c("Feature","MnSignal","Pval","LogPval","F.stat",
"Fold")
rownames(sim.pval.res)<-rownames(simcnt)
write.csv(sim.pval.res[-c(4,5)],file=paste(filenameRoot,"Sim Pvals.csv"),
row.names = FALSE)
## remove results for simulated data (using indexing with 1:nrow(cnt))
use.fit2<-use.fit
use.fit2$coefficients <-use.fit2$coefficients[1:nrow(cnt),]
use.fit2$fitted.values <- use.fit2$fitted.values[1:nrow(cnt),]
use.fit2$deviance <- use.fit2$deviance[1:nrow(cnt)]
use.fit2$counts <- use.fit2$counts[1:nrow(cnt),]
use.fit2$unshrunk.coefficients <- use.fit2$unshrunk.coefficients[1:nrow(cnt),]
use.fit2$df.residual <- use.fit2$df.residual[1:nrow(cnt)]
use.fit2$offset <- use.fit2$offset[1:nrow(cnt),]
use.fit2$dispersion <- use.fit2$dispersion[1:nrow(cnt)]
use.fit2$AveLogCPM <- use.fit2$AveLogCPM[1:nrow(cnt)]
use.fit2$df.residual.zeros <- use.fit2$df.residual.zeros[1:nrow(cnt)]
use.fit2$var.post <- use.fit2$var.post[1:nrow(cnt)]
use.fit2$var.prior <- use.fit2$var.prior[1:nrow(cnt)]
use.res2 <- glmQLFTest(use.fit2)
###################################
#### Examine results for ERCCs ####
###################################
pvals<-use.res2$table$PValue
names(pvals)<-rownames(cnt)
ERCC.pvals<-pvals[ERCC]
## Reanalyze ERCC transcripts using adjusted offsets to center fold
## change estimates
adj <- r_m.mn #### Use r_m estimated from NegBin GLM
use.fit.adj <- glmQLFit(cnt[ERCC,], design, dispersion = NBdisptrend[ERCC],
offset = log.offset - rep(c(adj,0),each=ncol(cnt)/2))
est.FC.adj<-use.fit.adj$coefficients[ERCC,2]
use.fit3<-use.fit2
# Substitute ERCC centered data into full use.fit3 structure
use.fit3$coefficients[ERCC,] <- use.fit.adj$coefficients[ERCC,]
use.fit3$unshrunk.coefficients[ERCC,] <- use.fit.adj$unshrunk.coefficients[ERCC,]
use.fit3$var.prior[ERCC] <- use.fit.adj$var.prior[ERCC]
use.fit3$var.post[ERCC] <- use.fit.adj$var.post[ERCC]
# deal with CompressedMatrix format to add the new ercc offsets...
expandedfit3 <- expandAsMatrix(use.fit3$offset)
expandedfit3[1:length(ERCC),] <- expandAsMatrix(use.fit.adj$offset)
recompress <- makeCompressedMatrix(expandedfit3)
use.fit3$offset <- recompress
use.res.adj<-glmQLFTest(use.fit3)
# collect the results for plotting and writing a table
Feature <- row.names(use.res.adj$table)
MnSignal <- as.numeric(rowMeans(cnt))
#replace with edgeR results
Pval <- use.res.adj$table$PValue
LogPval <- log10(use.res.adj$table$PValue)
Qval <- qvalue(Pval)$qvalues
F.stat <- use.res.adj$table$F
names(Qval)<-names(F.stat)<-names(LogPval)<-names(Pval)<-rownames(cnt)
Log2FC <- use.res.adj$table$logFC
allDE.res <- data.frame(Feature = names(pvals),
MnSignal = rowMeans(cnt),
Fold =
c(ERCC.FC[ERCC,2], rep(x=NA, length.out=
(length(pvals) -
(length
(ERCC.FC[
ERCC,2]
))))),
Log2Rat=Log2FC, Pval=Pval,
qvals=Qval, log.pvals=LogPval, F.stat=F.stat)
write.csv(allDE.res[c(1,2,5,3)],
file=paste0(filenameRoot, ".All.Pvals.csv"), row.names = FALSE)
ERCC.Pval.adj<-Pval[ERCC]
ERCC.F.stat.adj<-F.stat[ERCC]
ERCC.LogPval.adj<-LogPval[ERCC]
### Collect results for ERCCs; to be passed along to LODR function
ERCC.pval.res<-data.frame(row.names(cnt[ERCC,]),rowMeans(cnt[ERCC,]),
ERCC.Pval.adj,ERCC.LogPval.adj,ERCC.F.stat.adj,
ERCC.FC[ERCC,2])
colnames(ERCC.pval.res)<-c("Feature","MnSignal","Pval","LogPval","F.stat","Fold")
#print(str(pval.res))
row.names(ERCC.pval.res) <- NULL
write.csv(ERCC.pval.res[-c(4,5)],file=paste(filenameRoot,"ERCC Pvals.csv"),
row.names = FALSE)
cat("Finished DE testing")
exDat$Results$allDE.res <- allDE.res
exDat$Results$ERCCpvals <- ERCC.pval.res
### Using QLDisp code from edgeR to create similar ggplot with use.fit
glmfit <- use.fit
xlab = "Average Log2 CPM (Counts per million)"
ylab = "Squeezed QL Dispersion Estimates (Quarter-Root Mean Deviance)"
A <- glmfit$AveLogCPM
if (is.null(A))
A <- aveLogCPM(glmfit)
s2 <- glmfit$deviance/glmfit$df.residual.zeros
if (is.null(glmfit$var.post)) {
stop("need to run glmQLFit before getting QL dispersion estimates")
}
squeezedDisp <- data.frame(A = A, Dispersion = sqrt(sqrt(glmfit$var.post)))
dispERCC <- squeezedDisp[ERCC,]
dispERCC$Ratio <- ERCC.Ratio[ERCC,2]
if (length(glmfit$var.prior) == 1L) {
trendPlot <- geom_abline(yintercept = sqrt(sqrt(glmfit$var.prior)))
} else {
o <- order(A)
dispTrend <- data.frame(Atrend = A[o], Dispersion = sqrt(sqrt(glmfit$var.prior[o])) )
trendPlot <- geom_line(data = dispTrend, aes(Atrend, Dispersion))
}
quasiDispPlot <- ggplot() + geom_point(data = squeezedDisp, aes(x = A, y = Dispersion),
colour = "grey80", size = 5,
alpha = 0.6) +
geom_point(data = dispERCC, aes(x = A, y = Dispersion,colour = Ratio),
size = 5, alpha = 0.6) + xlab(xlab) + ylab(ylab) +
trendPlot +
#scale_x_log10() +
colScale + theme_bw() +
theme(legend.justification=c(1,1), legend.position=c(0.9,0.9))
exDat$Figures$dispPlot <- quasiDispPlot
exDat$Results$simcnt <- simcnt
cat("\nFinished examining dispersions\n")
return(exDat)
### end Edit Sarah Munro 20140216
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.