Nothing
loadExpMeas<- function(exDat, exTable, repNormFactor){
designFactors <- c("Sample","Rep")
datType <- exDat$sampleInfo$datType
isNorm <- exDat$sampleInfo$isNorm
# Check for exTable input errors
for (i in 2:length(colnames(exTable))){
if (str_count(colnames(exTable[c(i)]),"_") != 1){
stop("Check exTable column names for use of underscore (_)")
}
}
if (anyDuplicated(colnames(exTable)) > 0){
stop("Column names must be unique sample IDs")
}
sampleInfo = exDat$sampleInfo
# Pull idCols out of exDat
idCols <- exDat$erccInfo$idCols
if (missing(repNormFactor)){
repNormFactor <- NULL
}
#}else{
exDat$sampleInfo$repNormFactor = repNormFactor
#}
Transcripts = exTable
# Import data based on analysis type from SEQC main project
# force names to be ERCC- and first column name to Feature
names(Transcripts)[1] = "Feature"
#Transcripts$Feature = gsub(".","-",Transcripts$Feature)
Transcripts$Feature = gsub(":","",Transcripts$Feature)
row.names(Transcripts) <- gsub("[[:punct:]]", "_", row.names(Transcripts))
Transcripts$Feature <- gsub("[[:punct:]]", "_", Transcripts$Feature)
Transcripts$Feature = gsub("ERCC_","ERCC-",Transcripts$Feature)
#print(head(Transcripts))
# get data frames with just the ERCCs and just the human genes
TranscriptsERCCOnly = Transcripts[c(grep("ERCC-0", Transcripts$Feature)),]
TranscriptsHumanOnly = Transcripts[-c(grep("ERCC-0", Transcripts$Feature)),]
# Remove ERCCs in the definition file that are not in the count data file
idCols = idCols[match(TranscriptsERCCOnly$Feature,idCols$Feature),]
# Remove ERCCs without a Ratio
idCols = idCols[which(is.finite(idCols$Ratio)),]
# Remove ERCCs from count data and idCols that are absent from the experiment
TranscriptsERCCOnly = TranscriptsERCCOnly[match(idCols$Feature,
TranscriptsERCCOnly$Feature),]
Transcripts = rbind(TranscriptsERCCOnly, TranscriptsHumanOnly)
#############################################################################
sample1 <- sampleInfo$sample1Name
sample2 <- sampleInfo$sample2Name
designMat <- getDesignMat(expressionData = Transcripts,
factorList = designFactors,
patternSplit = '_')
### Filter the transcripts
if ((datType == "count")&(isNorm == FALSE)){
lengthinit <- dim(Transcripts)[1]
idxsample <- which((rowMeans(Transcripts[-c(1)])>1)&(rowSums(
Transcripts[-c(1)]!=0)>2))
Transcripts <- Transcripts[idxsample,]
Transcripts$Feature <- as.factor(as.character(Transcripts$Feature))
measERCCs <- Transcripts$Feature[grep("ERCC-0", Transcripts$Feature)]
insuffDat <- setdiff(idCols$Feature, measERCCs)
cat(paste("\nTranscripts were removed with a mean count < 1 or more than 2",
"\nreplicates with 0 counts."))
cat(paste("\nOriginal data contained ",lengthinit,"transcripts.",
"\nAfter filtering ",length(idxsample),"transcripts remain for ",
"analysis."))
cat(paste("\nA total of",length(insuffDat),"out of",length(idCols$Feature),
"\nERCC controls were filtered from the data set"))
if(length(insuffDat > 0)){
cat("\nThe excluded ERCCs are:\n")
for (j in seq(from=1,to=length(insuffDat),by=5)){
k = j+4
if (k > length(insuffDat)) k = length(insuffDat)
cat(insuffDat[j:k])
cat("\n")
}
}
}
# write Transcript csv file to directory
#write.csv(Transcripts, paste(sampleInfo$filenameRoot,"Transcripts.csv",
## sep="."), row.names = F)
# collect everything to add to exDat
exDat = append(exDat, list(Transcripts = Transcripts,
designMat = designMat,
sampleNames = c(sample1,sample2),
idCols = idCols))
return(exDat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.