Nothing
## ---- global_options, include=FALSE-------------------------------------------
knitr::opts_chunk$set(message=FALSE)
fig.cap1 <- "Toy example result for a double mutant (A,B) and one modulator
(C)."
fig.cap2 <- "Distribution of inferred logics for each double knock-out."
fig.cap3 <- "Ranked modulators for one double knock-out."
fig.cap4 <- "Perfect binary effects matrix for each logic."
fig.cap5 <- ""
fig.cap6 <- "Global results for the van Wageningen data set. See the help pages
of plot.epiScreen() and HeatmapOP() for additional parameters."
fig.cap7 <- "Results for one double knock-out of the van Wageningen data set.
See ?plot.epiScreen for further parameters."
fig.cap8 <- "Global result for the Sameith data set."
fig.cap9 <- "Example for one knock-out of the Sameith data set."
fig.cap10 <- "Density of the string-db interaction scores (van Wageningen).
Background (turqoise) and inferred by epiNEM (pink)."
fig.cap11 <- "Density of the string-dbinteraction scores (Sameith). Baackground
(turqoise) and inferred by epiNEM (pink)."
fig.cap12 <- "Density plot for graph-based GO similarity score
(van Wageningen)."
fig.cap13 <- "Density plot for graph-based GO similarity score (Sameith)."
fig.cap14 <- "Enrichment of van Wageningen modulators by KEGG pathways.
Colors refer to false discovery rates. NAs are colored in grey."
fig.cap15 <- "Enrichment of Sameith modulators by KEGG pathways. Colors
refer to false discovery rates. NAs are colored in grey."
fig.cap16 <- "Effect reporter KEGG pathway enrichment (van Wageningen).
Colors refer to false discovery rates. NAs are colored in grey."
fig.cap17 <- "Effect reporter KEGG pathway enrichment (Sameith). Colors
refer to false discovery rates. NAs are colored in grey."
## -----------------------------------------------------------------------------
library(epiNEM)
## -----------------------------------------------------------------------------
data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c("A", "A.B", "B", "C")
rownames(data) <- paste("E", 1:100, sep = "_")
print(head(data))
res <- epiNEM(data, method = "exhaustive")
## ---- fig.width = 7, fig.height = 7, fig.cap=fig.cap1-------------------------
plot(res)
## -----------------------------------------------------------------------------
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
colnames(data) <- c("A.B", "A.C", "B.C", "A", "B", "C", "D", "E", "G")
rownames(data) <- paste("E", 1:100, sep = "_")
res <- epiScreen(data)
## ---- fig.width = 4, fig.height = 4, fig.cap = fig.cap2-----------------------
plot(res)
## ---- fig.width = 5, fig.height = 4, fig.cap = fig.cap3-----------------------
plot(res, global = FALSE, ind = 1)
## ---- warning=FALSE, fig.width = 9, fig.height=5, fig.cap = fig.cap4----------
epiAnno()
## -----------------------------------------------------------------------------
data(sim)
## ---- fig.width = 7, fig.height = 7, fig.cap = "Simulation results."----------
plot(sim)
## ---- fig.width = 8, fig.height = 4, fig.cap = fig.cap6-----------------------
data(wagscreen)
doubles <- wagscreen$doubles
dataWag <- wagscreen$dataWag
## clean up the results:
if (length(grep("fus3|ptp2.ptc2", wagscreen$doubles)) > 0) {
wagscreen$doubles <- wagscreen$doubles[-grep("fus3|ptp2.ptc2",
wagscreen$doubles)]
wagscreen$dataWag <- wagscreen$dataWag[, -grep("fus3|ptp2.ptc2",
colnames(wagscreen$dataWag))]
wagscreen$ll <- wagscreen$ll[, -grep("fus3|ptp2.ptc2",
colnames(wagscreen$ll))]
wagscreen$logic <- wagscreen$logic[, -grep("fus3|ptp2.ptc2",
colnames(wagscreen$logic))]
}
plot(wagscreen, xrot = 45, borderwidth = 0)
## ---- fig.width = 8, fig.height = 4, fig.cap = fig.cap7-----------------------
plot(wagscreen, global = FALSE, ind = 3, cexGene = 0.7, cexLegend = 0.9,
off = 0.2)
## ---- fig.width = 10, fig.height = 6, fig.cap = fig.cap8----------------------
data(samscreen)
doubles <- samscreen$doubles
dataSam <- samscreen$dataSam
plot(samscreen, xrot = 45, cexCol = 0.6, borderwidth = 0)
## ---- fig.width = 8, fig.height = 4, fig.cap = fig.cap9-----------------------
plot(samscreen, global = FALSE, ind = 23, cexGene = 0.7, cexLegend = 0.9,
off = 0.2)
## ---- fig.width = 8, fig.height = 5, fig.cap = fig.cap10----------------------
library(STRINGdb)
## get_STRING_species(version="10", species_name=NULL)[26, ] # 4932
string_db <- STRINGdb$new( version="11", species=4932, score_threshold=0,
input_directory="")
data(wageningen_string)
string.scores <- wageningen_string$string.scores
string.names <- wageningen_string$string.names
tmp <- string_db$get_interactions(
string_db$mp(unique(unlist(strsplit(colnames(dataWag), "\\.")))))
stsc <- unlist(string.scores)
denspval <- wilcox.test(stsc, unlist(tmp$combined_score),
alternative = "greater")$p.value
for (i in 100:1) {
if (denspval < 10^(-i)) {
denspval <- paste("< ", 10^(-i), sep = "")
}
}
plot(density(stsc), col = "#00000000",
ylim = c(0, max(c(max(density(stsc)$y),
max(density(unlist(tmp$combined_score))$y)))),
main = paste("van Wageningen String-db interaction scores", sep = ""),
xlab = "",
cex.main = 1.5)
polygon(density(stsc), col = "#ff000066")
legend("topright", legend=paste("p-value", denspval, " "), cex = 1.5)
mtext = mtext("A", side = 3, line = 1, outer = FALSE, cex = 3, adj = 0,
at = par("usr")[1] - (par("usr")[2]-par("usr")[1])*0.1)
lines(density(unlist(tmp$combined_score)), col = "#00000000")
polygon(density(unlist(tmp$combined_score)), col = "#00ffff66")
data(sameith_string)
string.scores2 <- sameith_string$string.scores2
string.names2 <- sameith_string$string.names2
tmp <- string_db$get_interactions(
string_db$mp(unique(unlist(strsplit(colnames(dataSam), "\\.")))))
stsc <- unlist(string.scores2)
denspval <- wilcox.test(stsc, unlist(tmp$combined_score),
alternative = "greater")$p.value
for (i in 100:1) {
if (denspval < 10^(-i)) {
denspval <- paste("< ", 10^(-i), sep = "")
}
}
plot(density(stsc), col = "#00000000",
ylim = c(0, max(c(max(density(stsc)$y),
max(density(unlist(tmp$combined_score))$y)))),
main = paste("Sameith String-db interaction scores", sp = ""),
xlab = "",
cex.main = 1.5)
polygon(density(stsc), col = "#ff000066")
legend("topright", legend=paste("p-value", denspval, " "), cex = 1.5)
mtext = mtext("B", side = 3, line = 1, outer = FALSE, cex = 3, adj = 0,
at = par("usr")[1] - (par("usr")[2]-par("usr")[1])*0.1)
lines(density(unlist(tmp$combined_score)), col = "#00000000")
polygon(density(unlist(tmp$combined_score)), col = "#00ffff66")
## ---- fig.width = 8, fig.height = 5, fig.cap = fig.cap12----------------------
data(wageningen_GO)
GOepi <- wageningen_GO$epi
GOall <- wageningen_GO$all
denspval <- wilcox.test(GOepi, GOall, alternative = "greater")$p.value
for (i in 100:1) {
if (i <= 2) {
for (j in 1:9) {
if (denspval < j*10^(-i)) {
denspval <- paste("< ", j*10^(-i), sep = "")
}
}
} else {
if (denspval < 10^(-i)) {
denspval <- paste("< ", 10^(-i), sep = "")
}
}
}
plot(density(GOepi), col = "#00000000",
ylim = c(0, max(c(max(density(GOepi)$y),
max(density(unlist(GOall))$y)))),
main = "van Wageningen Go similarity scores",
xlab = "",
cex.main = 1.5)
polygon(density(GOepi), col = "#ff000066")
legend("topleft", legend=paste("p-value", denspval, " "), cex = 1.5)
mtext = mtext("C", side = 3, line = 1, outer = FALSE, cex = 3, adj = 0,
at = par("usr")[1] - (par("usr")[2]-par("usr")[1])*0.1)
lines(density(unlist(GOall)), col = "#00000000")
polygon(density(unlist(GOall)), col = "#00ffff66")
## ---- fig.width = 8, fig.height = 5, fig.cap = fig.cap13----------------------
data(sameith_GO)
GOepi2 <- sameith_GO$epi
GOall2 <- sameith_GO$all
denspval <- wilcox.test(GOepi2, GOall2, alternative = "greater")$p.value
for (i in 100:1) {
if (i <= 2) {
for (j in 1:9) {
if (denspval < j*10^(-i)) {
denspval <- paste("< ", j*10^(-i), sep = "")
}
}
} else {
if (denspval < 10^(-i)) {
denspval <- paste("< ", 10^(-i), sep = "")
}
}
}
plot(density(GOepi2), col = "#00000000",
ylim = c(0, max(c(max(density(GOepi2)$y),
max(density(unlist(GOall2))$y)))),
main = "Sameith Go similarity scores",
xlab = "",
cex.main = 1.5)
polygon(density(GOepi2), col = "#ff000066")
legend("topleft", legend=paste("p-value", denspval, " "), cex = 1.5)
mtext = mtext("D", side = 3, line = 1, outer = FALSE, cex = 3, adj = 0,
at = par("usr")[1] - (par("usr")[2]-par("usr")[1])*0.1)
lines(density(unlist(GOall2)), col = "#00000000")
polygon(density(unlist(GOall2)), col = "#00ffff66")
## ---- fig.width = 8, fig.height = 5, fig.cap = fig.cap14----------------------
data(wageningen_GO)
golist <- wageningen_GO$golist
goterms <- character()
for (i in 1:length(golist)) {
if (i %in% c(5,8)) { next() }
goterms <- c(goterms,
golist[[i]]$term_description[which(golist[[i]]$pvalue_fdr
< 1)])
}
gomat <- matrix(NA, length(unique(goterms)), ncol(wagscreen$ll))
rownames(gomat) <- sort(unique(goterms))
colnames(gomat) <- colnames(wagscreen$ll)
for (i in 1:ncol(wagscreen$ll)) {
gotmp <- golist[[i]]
gotmp <- gotmp[order(gotmp$term_description), ]
gomat[which(rownames(gomat) %in% golist[[i]]$term_description), i] <-
golist[[i]][which(golist[[i]]$term_description %in% rownames(gomat)), 4]
}
if (nrow(gomat) > 20) {
rownames(gomat) <- NULL
}
HeatmapOP(gomat,
bordercol = "transparent",
main = "", sub = "",
xrot = 45, col = "RdYlBu", breaks = 100)
## ---- fig.width = 12, fig.height = 3, fig.cap = fig.cap15---------------------
data(sameith_GO)
golist2 <- sameith_GO$golist
goterms <- character()
for (i in 1:length(golist2)) {
goterms <-
c(goterms,
golist2[[i]]$term_description[which(golist2[[i]]$pvalue_fdr < 0.1)])
}
gomat <- matrix(NA, length(unique(goterms)), ncol(samscreen$ll))
rownames(gomat) <- sort(unique(goterms))
colnames(gomat) <- colnames(samscreen$ll)
for (i in 1:ncol(samscreen$ll)) {
gotmp <- golist2[[i]]
gotmp <- gotmp[order(gotmp$term_description), ]
gomat[which(rownames(gomat) %in% golist2[[i]]$term_description), i] <-
golist2[[i]][which(golist2[[i]]$term_description %in%
rownames(gomat)), 4]
}
if (nrow(gomat) > 20) {
rownames(gomat) <- NULL
}
colnames(gomat) <- tolower(colnames(gomat))
HeatmapOP(gomat,
bordercol = "transparent",
main = "", sub = "",
xrot = 45, cexCol = 0.5, col = "RdYlBu", breaks = 100)
## ---- fig.height = 7, fig.width = 14, fig.cap = fig.cap16---------------------
gos <- unique(wageningen_GO$gos)
egenego <- wageningen_GO$egenego
gomat <- array(NA, c(length(gos), nrow(wagscreen$ll), ncol(wagscreen$ll)))
rownames(gomat) <- sort(gos)
colnames(gomat) <- rownames(wagscreen$ll)
dimnames(gomat)[[3]] <- colnames(wagscreen$ll)
for (i in 1:length(wagscreen$targets)) {
if (length(wagscreen$targets[[i]]) == 0) { next() }
for (j in 1:length(wagscreen$targets[[i]])) {
if (dim(egenego[[i]][[j]])[1] > 0) {
gomat[which(rownames(gomat) %in%
egenego[[i]][[j]]$term_description),
which(dimnames(gomat)[[2]] %in%
names(wagscreen$targets[[i]])[j]), i] <-
egenego[[i]][[j]]$pvalue_fdr[
order(egenego[[i]][[j]]$term_description)]
}
}
}
gomat <- apply(gomat, c(1,2), mean, na.rm = TRUE)
gomat <- gomat[order(apply(gomat, 1, function(x)
return(sum(is.na(x) == FALSE)))), ]
gomat <- gomat[, rev(order(apply(gomat, 2, function(x)
return(sum(is.na(x) == FALSE)))))]
gomat <- gomat[, which(apply(gomat, 2,
function(x) return(any(is.na(x) == FALSE))))]
HeatmapOP(gomat, xrot = 45, Colv = FALSE, Rowv = FALSE,
col = "RdYlBu", main = "", sub = "", breaks = 100)
## ---- fig.height = 9, fig.width = 16, fig.cap = fig.cap17---------------------
gos2 <- unique(sameith_GO$gos)
egenego2 <- sameith_GO$egenego
gomat <- array(NA, c(length(gos2), nrow(samscreen$ll), ncol(samscreen$ll)))
rownames(gomat) <- sort(gos2)
colnames(gomat) <- rownames(samscreen$ll)
dimnames(gomat)[[3]] <- colnames(samscreen$ll)
for (i in 1:length(samscreen$targets)) {
if (length(samscreen$targets[[i]]) == 0) { next() }
for (j in 1:length(samscreen$targets[[i]])) {
if (dim(egenego2[[i]][[j]])[1] > 0) {
gomat[which(rownames(gomat) %in%
egenego2[[i]][[j]]$term_description),
which(dimnames(gomat)[[2]] %in%
names(samscreen$targets[[i]])[j]), i] <-
egenego2[[i]][[j]]$pvalue_fdr[
order(
egenego2[[i]][[j]]$term_description)]
}
}
}
gomat <- apply(gomat, c(1,2), mean, na.rm = TRUE)
gomat <- gomat[order(apply(gomat, 1, function(x)
return(sum(is.na(x) == FALSE)))), ]
gomat <- gomat[, rev(order(apply(gomat, 2, function(x)
return(sum(is.na(x) == FALSE)))))]
gomat <- gomat[, which(apply(gomat, 2,
function(x) return(any(is.na(x) == FALSE))))]
colnames(gomat) <- tolower(colnames(gomat))
HeatmapOP(gomat, xrot = 45, Colv = FALSE, Rowv = FALSE,
col = "RdYlBu", main = "", sub = "", breaks = 100)
## ---- eval=FALSE--------------------------------------------------------------
# ###### simulation:
#
# ## install_github("MartinFXP/B-NEM"); library(bnem)
#
# library(nem)
#
# library(minet)
#
# library(pcalg)
#
# runs <- 100
#
# noiselvls <- c(0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5)
#
# random <- list(FPrate = 0.1, FNrate = noiselvls,
# single = 4, double = 1, reporters = 100, replicates = 3)
#
# do <- c("n", "p", "a", "e", "b")
#
# maxTime <- FALSE
#
# forcelogic <- TRUE
#
# epinemsearch <- "greedy"
#
# nIterations <- 3
#
# bnemsearch <- "genetic"
#
# simresults <- SimEpiNEM(runs, do, random, maxTime, forcelogic,
# epinemsearch, bnemsearch, nIterations)
#
# sim <- simresults
#
# ###### yeast van Wageningen et al.:
#
# file <- paste("http://www.holstegelab.nl/",
# "publications/sv/signaling_redundancy/downloads/DataS1.txt",
# sep = "")
#
# data <- read.delim(file)
#
# dataM <- data[-(1), (1+(1:(324/2))*2)]
#
# dataP <- data[-(1), (2+(1:(324/2))*2)]
#
# data[, 2] <- as.character(data[, 2])
#
# rndup <- which(duplicated(data[, 2]) == TRUE)
#
# data[rndup, 2] <- paste(data[rndup, 2], "_dup", sep = "")
#
# rownames(dataM) <- rownames(dataP) <- data[2:nrow(data), 2]
#
# dataM <- dataM[-1, ]
#
# dataP <- dataP[-1, ]
#
# dataM <- apply(dataM, c(1,2), as.numeric)
#
# dataP <- apply(dataP, c(1,2), as.numeric)
#
# dataBin <- dataM
#
# sig <- 0.05
#
# cutoff <- log2(1.7)
#
# dataBin[which(dataP < sig & dataP > 0 & abs(dataM) >= cutoff)] <- 1
#
# dataBin[which(dataP >= sig | dataP == 0 | abs(dataM) < cutoff)] <- 0
#
# dataBin <- dataBin[-which(apply(dataBin, 1, max) == 0), ]
#
# dataBinWag <- dataBin
#
# colnames(dataBin) <- gsub(".del.vs..wt", "", colnames(dataBin))
#
# colnames(dataBin) <- gsub(".del", "", colnames(dataBin))
#
# doubles <- colnames(dataBin)[grep("\\.", colnames(dataBin))]
#
# if (length(grep("vs", doubles)) > 0) {
# doubles <- sort(doubles[-grep("vs", doubles)])
# } else { doubles <- sort(doubles) }
#
# doubles.genes <- unique(unlist(strsplit(doubles, "\\.")))
#
# if (length(grep("\\.", colnames(dataBin))) > 0) {
# singles <- colnames(dataBin)[-grep("\\.", colnames(dataBin))]
# } else { singles <- sort(singles) }
#
# singles <- unique(sort(singles))
#
# wagscreen <- epiScreen(dataBin[, -grep("fus3\\.|ptp2.ptc2", colnames(dataBin))])
#
# wagscreen$dataWag <- dataBin[, -grep("fus3.|ptp2.ptc2", colnames(dataBin))]
#
# ###### yeast Sameith et al.:
#
# file <- paste("http://www.holstegelab.nl/",
# "publications/GSTF_geneticinteractions/",
# "downloads/del_mutants_limma.txt", sep = "")
#
# data <- read.delim(file)
#
# data <- apply(data, c(1,2), as.character)
#
# dataM <- data[-1, which(data[1, ] %in% "M")]
#
# dataM <- apply(dataM, c(1,2), as.numeric)
#
# dataP <- data[-1, which(data[1, ] %in% "p.value")]
#
# dataP <- apply(dataP, c(1,2), as.numeric)
#
# rownames(dataM) <- rownames(dataP) <- data[2:nrow(data), 1]
#
# dataBin <- dataM
#
# sig <- 0.01
#
# cutoff <- log2(1.5)
#
# dataBin[which(dataP < sig & dataP > 0 & abs(dataM) >= cutoff)] <- 1
#
# dataBin[which(dataP >= sig | dataP == 0 | abs(dataM) < cutoff)] <- 0
#
# dataBin <- dataBin[-which(apply(dataBin, 1, max) == 0), ]
#
# colnames(dataBin) <- gsub("\\.\\.\\.", "\\.", colnames(dataBin))
#
# doubles <- colnames(dataBin)[grep("\\.", colnames(dataBin))]
#
# if (length(grep("vs", doubles)) > 0) {
# doubles <- sort(doubles[-grep("vs", doubles)])
# } else { doubles <- sort(doubles) }
#
# doubles.genes <- unique(unlist(strsplit(doubles, "\\.")))
#
# if (length(grep("\\.", colnames(dataBin))) > 0) {
# singles <- colnames(dataBin)[-grep("\\.", colnames(dataBin))]
# } else { singles <- sort(singles) }
#
# singles <- unique(sort(singles))
#
# samscreen <- epiScreen(dataBin)
#
# samscreen$dataSam <- dataBin
#
# ## String-db interaction scores:
#
# library(STRINGdb)
#
# get_STRING_species(version="10", species_name=NULL)[26, ] # 4932
#
# string_db <- STRINGdb$new( version="10", species=4932, score_threshold=0,
# input_directory="")
#
# llmat <- wagscreen$ll
#
# logicmat <- wagscreen$logic
#
# string.scores <- list()
#
# string.names <- character()
#
# for (i in 1:ncol(llmat)) {
# if (sum(!(llmat[, i] %in% c(0,-Inf))) > 0) {
# top30 <- llmat[, i]
# top30[which(top30 == 0)] <- -Inf
# top30 <- top30[which(!(llmat[, i] %in% c(0,-Inf)))]
# top30 <- top30[order(top30,decreasing = TRUE)[1:min(30, sum(!(llmat[, i]
# %in% c(0,-Inf))))]]
#
# doubles <- unlist(strsplit(colnames(llmat)[i], "\\."))
#
# for (j in names(top30)) {
# tmp <- string_db$get_interactions(string_db$mp(c(doubles[1], j)))
# string.scores <- c(string.scores, tmp$combined_score)
# string.names <- c(string.names, paste(sort(c(doubles[1], j)),
# collapse = "_"))
# tmp <- string_db$get_interactions(string_db$mp(c(doubles[2], j)))
# string.scores <- c(string.scores, tmp$combined_score)
# string.names <- c(string.names, paste(sort(c(doubles[2], j)),
# collapse = "_"))
# }
#
# } else {
# next()
# }
# }
#
#
# llmat <- samscreen$ll
#
# logicmat <- samscreen$logic
#
# string.scores2 <- list()
#
# string.names2 <- character()
#
# for (i in 1:ncol(llmat)) {
#
# if (sum(!(llmat[, i] %in% c(0,-Inf))) > 0) {
# top30 <- llmat[, i]
# top30[which(top30 == 0)] <- -Inf
# top30 <- top30[which(!(llmat[, i] %in% c(0,-Inf)))]
# top30 <- top30[order(top30, decreasing = TRUE)
# [1:min(30, sum(!(llmat[, i] %in% c(0,-Inf))))]]
#
# doubles <- unlist(strsplit(colnames(llmat)[i], "\\."))
#
# for (j in names(top30)) {
# tmp <- string_db$get_interactions(string_db$mp(c(doubles[1], j)))
# string.scores2 <- c(string.scores2, tmp$combined_score)
# string.names2 <- c(string.names2, paste(sort(c(doubles[1], j)),
# collapse = "_"))
# tmp <- string_db$get_interactions(string_db$mp(c(doubles[2], j)))
# string.scores2 <- c(string.scores2, tmp$combined_score)
# string.names2 <- c(string.names2, paste(sort(c(doubles[2], j)),
# collapse = "_"))
# }
#
# } else {
# next()
# }
#
# }
#
# ## graph based GO similarity scores:
#
# library(GOSemSim)
# library(AnnotationHub)
# library(org.Sc.sgd.db)
#
# ystGO <- godata("org.Sc.sgd.db", ont = "BP",
# keytype = keytypes(org.Sc.sgd.db)[11], computeIC = FALSE)
#
# ## van Wageningen et al.:
#
# GOepi <- numeric()
#
# for (i in 1:ncol(wagscreen$ll)) {
# if (i %in% grep("fus3|ptp2.ptc2", colnames(wagscreen$ll))) { next() }
# pair <- toupper(unlist(strsplit(colnames(wagscreen$ll)[i], "\\.")))
# for (j in which(!is.infinite(wagscreen$ll[, i]) == TRUE &
# wagscreen$ll[, i] != 0)) {
# tmp <- clusterSim(pair, toupper(rownames(wagscreen$ll)[j]),
# semData = ystGO, combine = "max")
# if (!is.na(tmp[1])) {
# GOepi <- c(GOepi, tmp)
# }
# }
# }
#
# GOall <- numeric()
#
# for (i in colnames(wagscreen$ll)) {
# pair <- toupper(unlist(strsplit(i, "\\.")))
# for (j in rownames(wagscreen$ll)) {
# tmp <- clusterSim(pair, toupper(j), semData = ystGO, combine = "max")
# if (!is.na(tmp[1])) {
# GOall <- c(GOall, tmp)
# }
# }
# }
#
# ## Sameith et al.:
#
# GOepi2 <- numeric()
#
# for (i in 1:ncol(samscreen$ll)) {
# if (i %in% grep("fus3|ptp2.ptc2", colnames(samscreen$ll))) { next() }
# pair <- toupper(unlist(strsplit(colnames(samscreen$ll)[i], "\\.")))
# for (j in which(!is.infinite(samscreen$ll[, i]) == TRUE &
# samscreen$ll[, i] != 0)) {
# tmp <- clusterSim(pair, toupper(rownames(samscreen$ll)[j]),
# semData = ystGO, combine = "max")
# if (!is.na(tmp[1])) {
# GOepi2 <- c(GOepi2, tmp)
# }
# }
# }
#
# GOall2 <- numeric()
#
# for (i in colnames(samscreen$ll)) {
# pair <- toupper(unlist(strsplit(i, "\\.")))
# for (j in rownames(samscreen$ll)) {
# tmp <- clusterSim(pair, toupper(j), semData = ystGO, combine = "max")
# if (!is.na(tmp[1])) {
# GOall2 <- c(GOall2, tmp)
# }
# }
# }
#
# ###### Go enrichment analysis:
#
# ## van Wageningen et al.:
#
# string_db$set_background(
# string_db$mp(unique(c(unlist(strsplit(colnames(wagscreen$ll), "\\.")),
# rownames(wagscreen$ll)))))
#
# golist <- list()
#
# for (i in 1:ncol(wagscreen$ll)) {
# golist[[i]] <- string_db$get_enrichment(string_db$mp(unique(
# c(unlist(strsplit(colnames(wagscreen$ll)[i], "\\.")),
# rownames(wagscreen$ll)[which(!(wagscreen$logic[, i] %in%
# c("NOINFO", "NOEPI")))]))),
# category = "KEGG", methodMT = "fdr", iea = TRUE)
# }
#
# string_db$set_background(string_db$mp(rownames(wagscreen$dataWag)))
#
# egenego <- list()
#
# gos <- character()
#
# for (i in 1:length(wagscreen$targets)) {
# egenego[[i]] <- list()
# if (length(wagscreen$targets[[i]]) == 0) { next() }
# for (j in 1:length(wagscreen$targets[[i]])) {
# egenego[[i]][[j]] <- string_db$get_enrichment(
# string_db$mp(wagscreen$targets[[i]][[j]]),
# category = "KEGG", methodMT = "fdr", iea = TRUE)
# if (dim(egenego[[i]][[j]])[1] > 0) {
# gos <- c(gos, egenego[[i]][[j]]$term_description)
# }
# }
# }
# ## Sameith et al.:
#
# string_db$set_background(string_db$mp(unique(c(unlist(
# strsplit(colnames(samscreen$ll), "\\.")), rownames(samscreen$ll)))))
#
# golist2 <- list()
#
# for (i in 1:ncol(samscreen$ll)) {
# golist2[[i]] <- string_db$get_enrichment(string_db$mp(
# unique(c(unlist(strsplit(colnames(samscreen$ll)[i], "\\.")),
# rownames(samscreen$ll)
# [which(!(samscreen$logic[, i] %in% c("NOINFO", "NOEPI")))]))),
# category = "KEGG", methodMT = "fdr", iea = TRUE)
# }
#
# string_db$set_background(string_db$mp(rownames(samscreen$dataWag)))
#
# egenego2 <- list()
#
# gos2 <- character()
#
# for (i in 1:length(samscreen$targets)) {
# egenego2[[i]] <- list()
# if (length(samscreen$targets[[i]]) == 0) { next() }
# for (j in 1:length(samscreen$targets[[i]])) {
# egenego2[[i]][[j]] <- string_db$get_enrichment(
# string_db$mp(samscreen$targets[[i]][[j]]),
# category = "KEGG", methodMT = "fdr", iea = TRUE)
# if (dim(egenego2[[i]][[j]])[1] > 0) {
# gos2 <- c(gos2, egenego2[[i]][[j]]$term_description)
# }
# }
# }
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.