Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval = F----------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("doseR")
## -----------------------------------------------------------------------------
library(doseR)
library(SummarizedExperiment)
## -----------------------------------------------------------------------------
data(hmel.data.doser)
## -----------------------------------------------------------------------------
reps <- c("Male", "Male", "Male", "Female", "Female", "Female")
## -----------------------------------------------------------------------------
annotxn <- data.frame("Chromosome" = factor(hmel.dat$chromosome,
levels = 1:21))
annotxn$ZA <- factor(ifelse(hmel.dat$chromosome == 21, "Z", "A"),
levels = c("A", "Z"))
## -----------------------------------------------------------------------------
counts <- hmel.dat$readcounts
colData <- S4Vectors::DataFrame(Treatment=as.factor(reps),
row.names=colnames(hmel.dat$readcounts))
rowData <- S4Vectors::DataFrame(annotation = annotxn,
seglens = hmel.dat$trxLength,
row.names=rownames(hmel.dat$readcounts) )
se2 <- SummarizedExperiment(assays=list(counts=counts),
colData=colData, rowData=rowData)
## -----------------------------------------------------------------------------
SummarizedExperiment::colData(se2)$Libsizes <- getLibsizes3(se2,
estimationType = "total")
## -----------------------------------------------------------------------------
SummarizedExperiment::assays(se2)$rpkm <- make_RPKM(se2)
# se2 now equals se...
data(hmel.se) # loads hmel.dat list
# MD5 checksum equivalence:
#library(digest)
digest::digest(se) == digest::digest(se2)
## ---- fig.align="center", fig.width=6-----------------------------------------
plotMA.se(se, samplesA ="Male", samplesB = "Female", cex = .2 ,
pch = 19, col = rgb(0,0,0, .2), xlab = "Log2(Average RPKM)",
ylab = "Log2(Male:Female)")
## -----------------------------------------------------------------------------
f_se <- simpleFilter(se, mean_cutoff = 0.01, counts = FALSE)
## ---- fig.align="center", fig.width=5-----------------------------------------
plotExpr(f_se, groupings = "annotation.ZA", clusterby_grouping = FALSE,
col=c("grey80","red","grey80","red"), notch=TRUE, ylab = "Log2(RPKM)")
## -----------------------------------------------------------------------------
se.male <- f_se[, colData(f_se)$Treatment == "Male"]
male_ZvA <- generateStats(se.male , groupings = "annotation.ZA", LOG2 = FALSE)
male_ZvA$summary # distributional summary statistics
male_ZvA$kruskal # htest class output from kruskal.test()
lapply(male_ZvA$data, head) # a record of values used for statistics.
## ---- fig.align="center"------------------------------------------------------
plotExpr(f_se, groupings = "annotation.Chromosome", col=c(rep("grey80", 20),
"red"), notch=TRUE, ylab = "Log2(RPKM)", las = 2, treatment = "Male",
clusterby_grouping = TRUE )
## ---- fig.align="center", fig.width=4-----------------------------------------
plotRatioBoxes(f_se, groupings = "annotation.ZA", treatment1 = "Male",
treatment2 = "Female", outline = FALSE, col = c("grey80", "red"),
ylab = "Log(Male:Female)" )
## ---- fig.align="center", fig.width = 5---------------------------------------
plotRatioDensity(f_se, groupings = "annotation.ZA", treatment1 = "Male",
treatment2 = "Female", type = "l", xlab = "Log(Male:Female)", ylab = "Density")
## ---- fig.align="center", fig.width=10----------------------------------------
par(mfrow = c(1,2))
plotRatioBoxes(f_se, groupings = "annotation.Chromosome", treatment1 =
"Male", treatment2 = "Female", outline = FALSE, col=c(rep("grey80", 20),
"red"), ylab = "Log(Male:Female)", xlab = "Chromosome" )
plotRatioDensity(f_se, groupings = "annotation.Chromosome", treatment1 =
"Male", treatment2 = "Female", type = "l", xlab = "Log(Male:Female)",
ylab = "Density", col=c(rep("grey80", 20), "red"), lty = 1)
## -----------------------------------------------------------------------------
za.ratios.test <- test_diffs(f_se, groupings = "annotation.ZA",
treatment1 = "Male", treatment2 = "Female", LOG2 = FALSE )
za.ratios.test$summary # summary statistics for each grouping
za.ratios.test$kruskal # htest class output from kruskal.test()
lapply(za.ratios.test$data, head) # values used for summaries and tests
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.