Nothing
########## dittoHeatmap: Builds a heatmap with given genes using pheatmap. ##########
#' Outputs a heatmap of given genes
#' @importFrom grDevices colorRampPalette
#'
#' @param object A Seurat, SingleCellExperiment, or SummarizedExperiment object.
#' @param genes String vector, c("gene1","gene2","gene3",...) = the list of genes to put in the heatmap.
#' If not provided, defaults to all genes of the object / assay.
#' @param metas String vector, c("meta1","meta2","meta3",...) = the list of metadata variables to put in the heatmap.
#' @param complex Logical which sets whether the heatmap should be generated with ComplexHeatmap (\code{TRUE}) versus pheatmap (\code{FALSE}, default).
#' @param cells.use String vector of cells'/samples' names OR an integer vector specifying the indices of cells/samples which should be included.
#'
#' Alternatively, a Logical vector, the same length as the number of cells in the object, which sets which cells to include.
#' @param assay,slot single strings or integer that set which expression data to use. See \code{\link{gene}} for more information about how defaults for these are filled in when not provided.
#' @param order.by Single string, string vector, or numeric vector which sets how cells/samples (columns) will be ordered when \code{cluster_cols = FALSE}.
#'
#' Strings should be the name of a gene, or metadata slot, but can also be multiple such values in order of priority.
#'
#' Alternatively, can be a numeric vector which gives the column index order directly.
#' @param heatmap.colors the colors to use within the heatmap when (default setting) \code{scaled.to.max} is set to \code{FALSE}.
#' Default is a ramp from navy to white to red with 50 slices.
#' @param scaled.to.max Logical, \code{FALSE} by default, which sets whether expression shoud be scaled between [0, 1].
#' This is recommended for single-cell datasets as they are generally enriched in 0s.
#' @param heatmap.colors.max.scaled the colors to use within the heatmap when \code{scaled.to.max} is set to \code{TRUE}.
#' Default is a ramp from white to red with 25 slices.
#' @param main String that sets the title for the heatmap.
#' @param cell.names.meta quoted "name" of a meta.data slot to use for naming the columns instead of using the raw cell/sample names.
#' @param annot.by String name of any metadata slots containing how the cells/samples should be annotated.
#' @param annot.colors String (color) vector where each color will be assigned to an individual annotation in the generated annotation bars.
#' @param data.out Logical. When set to \code{TRUE}, changes the output from the heatmat itself, to a list containing all arguments that would have be passed to \code{\link{pheatmap}} for heatmap generation.
#' (Can be useful for troubleshooting or customization.)
#' @param highlight.features String vector of genes/metadata whose names you would like to show. Only these genes/metadata will be named in the resulting heatmap.
#' @param highlight.genes Deprecated, use \code{highlight.features} instead.
#' @param cluster_cols,border_color,legend_breaks,breaks,... other arguments passed to \code{\link[pheatmap]{pheatmap}} directly (or to \code{\link[ComplexHeatmap]{pheatmap}} if \code{complex = TRUE}).
#' @param show_colnames,show_rownames,scale,annotation_col,annotation_colors arguments passed to \code{pheatmap} that are over-ruled by certain \code{dittoHeatmap} functionality:
#' \itemize{
#' \item show_colnames (& labels_col): if \code{cell.names.meta} is provided, pheatmaps's \code{labels_col} is utilized to show these names and \code{show_colnames} parameter is set to \code{TRUE}.
#' \item show_rownames (& labels_row): if feature names are provided to \code{highlight.features}, pheatmap's \code{labels_row} is utilized to show just these features' names and \code{show_rownames} parameter is set to \code{TRUE}.
#' \item scale: when parameter \code{scaled.to.max} is set to true, pheatmap's \code{scale} is set to \code{"none"} and the max scaling is performed prior to the pheatmap call.
#' \item annotation_col: Can be provided as normal by the user and any metadata given to \code{annot.by} will then be appended.
#' \item annotation_colors: dittoHeatmap fills this complicated-to-produce input in automatically by pulling from the colors given to \code{annot.colors},
#' but it is possible to set all or some manually. dittoSeq will just fill any left out annotations. Format is a named (annotation_col & annotation_row colnames) character vector list where individual color values can also be named.
#' }
#' @description Given a set of genes, cells/samples, and metadata names for column annotations, this function will retrieve the expression data for those genes and cells, and the annotation data for those cells.
#' It will then utilize these data to make a heatmap using the \code{\link[pheatmap]{pheatmap}} function of either the \code{pheatmap} (default) or \code{ComplexHeatmap} package.
#'
#' @return A \code{pheatmap} object.
#'
#' Alternatively, if \code{complex} is set to \code{TRUE}, a \code{\link[ComplexHeatmap]{Heatmap}}
#'
#' Alternatively, if \code{data.out} is set to \code{TRUE}, a list containing all arguments that would have be passed to pheatmap to generate such a heatmap.
#'
#' @details
#' This function serves as a wrapper for creating heatmaps from bulk or single-cell RNAseq data with pheatmap::\code{\link{pheatmap}},
#' by essentially automating the data extraction and annotation building steps.
#' (Or alternatively with ComplexHeatmap::\code{\link[ComplexHeatmap]{pheatmap}} if \code{complex} is set to \code{true}.
#'
#' The function will extract the expression matrix for a set of \code{genes} and/or an optional subset of cells / samples to use via \code{cells.use},
#' This matrix is either left as is, default (for scaling within the ultimate call to pheatmap), or if \code{scaled.to.max = TRUE}, is scaled by dividing each row by its maximum value.
#'
#' When provided with a set of metadata slot names to use for building annotations (with the \code{annot.by} input),
#' the relevant metadata is retrieved from the \code{object} and compiled into a \code{pheatmap}-ready \code{annotation_col} input.
#' The input \code{annot.colors} is used to establish the set of colors that should be used for building a \code{pheatmap}-ready \code{annotation_colors} input as well,
#' unless such an input has been provided by the user. See below for further details.
#'
#' @section Many additional characteristics of the plot can be adjusted using discrete inputs:
#' \itemize{
#' \item The cells can be ordered in a set way using the \strong{\code{order.by}} input.
#'
#' Such ordering happens by default for single-cell RNAseq data when any metadata are provided to \code{annot.by} as it is often unfeasible to cluster thousands of cells.
#' \item A plot title can be added with \strong{\code{main}}.
#' \item Gene or cell/sample names can be hidden with \code{show_rownames} and \code{show_colnames}, respectively, or...
#' \itemize{
#' \item Particular features can also be selected for labeling using the \code{highlight.features} input.
#' \item Names of all cells/samples can be replaced with the contents of a metadata slot using the \code{cell.names.meta} input.
#' }
#' \item Additional tweaks are possible through use of \code{\link[pheatmap]{pheatmap}} inputs which will be directly passed through.
#' Some examples of useful \code{pheatmap} parameters are:
#' \itemize{
#' \item \code{cluster_cols} and \code{cluster_rows} for controlling clustering.
#' Note: cluster_cols will always be over-written to be \code{FALSE} when the input \code{order.by} is used above.
#' \item \code{treeheight_row} and \code{treeheight_col} for setting how large the trees on the side/top should be drawn.
#' \item \code{cutree_col} and \code{cutree_row} for spliting the heatmap based on kmeans clustering
#' }
#' \item When \code{complex} is set to \code{TRUE}, additional inputs for the \code{\link[ComplexHeatmap]{Heatmap}} function can be given as well.
#' Some examples:
#' \itemize{
#' \item \code{use_raster} to have the heatmap rasterized/flattened to pixels which can make working with large heatmaps in a figure editor, like Illustrator, simpler.
#' \item \code{name} to give the heatmap color scale a custom title.
#' }
#' }
#'
#' @section Customized annotations:
#' In typical operation, dittoHeatmap pulls metadata annotations given to \code{annot.by} to build a pheatmap-\code{annotation_col} input,
#' then it uses the colors provided to \code{annot.colors} to create the pheatmap-\code{annotation_colors} input which sets the annotation coloring.
#' Specifically...
#' \itemize{
#' \item colors for the values of \strong{discrete} metadata are pulled from the \emph{start} of the \code{annot.colors} vector, in the order that they are given to \code{annot.by}
#' \item colors for the values of \strong{continuous} metadata are pulled from the \emph{end} of the \code{annot.colors} vector, in the order that they are given to \code{annot.by}
#' }
#'
#' To customize colors or add additional column or row annotations, users can also provide \code{annotation_colors}, \code{annotation_col}, or \code{annotation_row} pheatmap-inputs directly.
#' General structure is described below, but see \code{\link[pheatmap]{pheatmap}} for additional details and examples.
#' \itemize{
#' \item \code{annotation_col} = a data.frame with rownames of the barcodes/names of all cells/samples in the dataset & columns representing annotations.
#' Names of columns are used as the annotation titles. *dittoSeq will append any \code{annot.by} annotations to this dataframe.
#' \item \code{annotation_row} = a data.frame with rownames of the genes/feature of the dataset & columns representing annotations.
#' Names of columns are used as the annotation titles.
#' \item \code{annotation_colors} = a named list of string (color) vectors.
#' Vectors must be named by the row or column annotation title that they are associated with.
#' Optionally, individual colors can be named with the values that they should be associated with.
#'
#' Partial \code{annotation_colors} lists (containing vectors for only certain annotations) will have colors for left out annotations filled in automatically.
#' For such filling, \code{annot.colors} are pulled for column annotations first, then for row annotations.
#' }
#'
#' @seealso
#' pheatmap::\code{\link[pheatmap]{pheatmap}}, for how to add additional heatmap tweaks,
#' OR or ComplexHeatmap::\code{\link[ComplexHeatmap]{pheatmap}} and \code{\link[ComplexHeatmap]{Heatmap}} for when you want to turn on rasterization or any additional customizations offered by this fantastic package.
#'
#' \code{\link{metaLevels}} for helping to create manual annotation_colors inputs.
#' This function universally checks the options/levels of a string, factor (filled only by default), or numerical metadata.
#'
#' @examples
#' example(importDittoBulk, echo = FALSE)
#' scRNA <- setBulk(myRNA, FALSE)
#'
#' # We now have two SCEs for our example purposes:
#' # 'myRNA' will be treated as a bulk RNAseq dataset
#' # 'scRNA' will be treated as a single-cell RNAseq dataset
#'
#' # Pick a set of genes
#' genes <- getGenes(myRNA)[1:30]
#'
#' # Make a heatmap with cells/samples annotated by their clusters
#' dittoHeatmap(myRNA, genes,
#' annot.by = "clustering")
#'
#' # For single-cell data, you will typically have more cells than can be
#' # clustered quickly. Thus, cell clustering is turned off by default for
#' # single-cell data.
#' dittoHeatmap(scRNA, genes,
#' annot.by = "clustering")
#'
#' # Using the 'order.by' input:
#' # Ordering by a useful metadata or gene is often helpful.
#' # For single-cell data, order.by defaults to the first element given to
#' # annot.by.
#' # For bulk data, order.by must be set separately.
#' dittoHeatmap(myRNA, genes,
#' annot.by = "clustering",
#' order.by = "clustering",
#' cluster_cols = FALSE)
#' # 'order.by' can be multiple metadata/genes, or a vector of indexes directly
#' dittoHeatmap(scRNA, genes,
#' annot.by = "clustering",
#' order.by = c("clustering", "timepoint"))
#' dittoHeatmap(scRNA, genes,
#' annot.by = "clustering",
#' order.by = ncol(scRNA):1)
#'
#' # When there are many cells, showing names becomes less useful.
#' # Names can be turned off with the 'show_colnames' parameter.
#' dittoHeatmap(scRNA, genes,
#' annot.by = "groups",
#' show_colnames = FALSE)
#'
#' # When theree are many many cells & genes, rasterization can be super useful
#' # as well.
#' # Rasterization, or flattening of the distinct color objects to a matrix of
#' # pixels, is the default for large heatmaps in the ComplexHeatmap package,
#' # and you can have the heatmap rendered with this package (rather than the
#' # pheatmap package) by setting 'complex = TRUE'.
#' # Our data here is too small to hit that defaulting switch, so lets give
#' # the direct input, 'use_raster' as well:
#' if (requireNamespace("ComplexHeatmap")) { # Checks if you have the package.
#' dittoHeatmap(scRNA, genes, annot.by = "groups", show_colnames = FALSE,
#' complex = TRUE,
#' use_raster = TRUE)
#' }
#'
#' # Additionally, it is recommended for single-cell data that the parameter
#' # scaled.to.max be set to TRUE, or scale be "none" and turned off altogether,
#' # because these data are generally enriched for zeros that otherwise get
#' # scaled to a negative value.
#' dittoHeatmap(myRNA, genes, annot.by = "groups",
#' order.by = "groups", show_colnames = FALSE,
#' scaled.to.max = TRUE)
#'
#'
#' @author Daniel Bunis and Jared Andrews
#' @importFrom pheatmap pheatmap
#' @importFrom grDevices colorRampPalette
#' @export
dittoHeatmap <- function(
object,
genes = getGenes(object, assay),
metas = NULL,
cells.use = NULL,
annot.by = NULL,
order.by = .default_order(object, annot.by),
main = NA,
cell.names.meta = NULL,
assay = .default_assay(object),
slot = .default_slot(object),
heatmap.colors = colorRampPalette(c("blue", "white", "red"))(50),
scaled.to.max = FALSE,
heatmap.colors.max.scaled = colorRampPalette(c("white", "red"))(25),
annot.colors = c(dittoColors(),dittoColors(1)[seq_len(7)]),
annotation_col = NULL,
annotation_colors = NULL,
data.out=FALSE,
highlight.features = NULL,
highlight.genes = NULL,
show_colnames = isBulk(object),
show_rownames = TRUE,
scale = "row",
cluster_cols = isBulk(object),
border_color = NA,
legend_breaks = NA,
breaks = NA,
complex = FALSE,
...) {
# If cells.use given as logical, populate as names.
cells.use <- .which_cells(cells.use, object)
all.cells <- .all_cells(object)
# Handle deprecated argument
if (!is.null(highlight.genes)) {
if (!is.null(highlight.features)) {
stop("you can only specify one of 'highlight.genes' or 'highlight.features'")
}
.Deprecated(msg="argument 'highlight.genes' is deprecated, please use 'highlight.features' instead")
highlight.features <- highlight.genes
}
### Obtain all needed data
data <- .get_heatmap_data(object, genes, metas, assay, slot, cells.use)
if (!is.null(cell.names.meta)) {
cell.names <- .var_OR_get_meta_or_gene(cell.names.meta, object)
} else {
cell.names <- NULL
}
if (!is.null(order.by)) {
if (is.numeric(order.by)) {
ordering <- order.by
# Trim by cells.use if longer than cells.use
if (length(ordering) > length(cells.use)){
ordering <- ordering[all.cells %in% cells.use]
}
} else {
order_data <- lapply(
order.by,
function(x) {
.var_OR_get_meta_or_gene(x, object, assay, slot)[all.cells %in% cells.use]
})
ordering <- do.call(order, order_data)
}
data <- data[, ordering]
}
# Make the columns annotations data
if (is.null(annotation_col)) {
annotation_col <- data.frame(row.names = cells.use)
} else if (!all(cells.use %in% rownames(annotation_col))) {
stop("rows of 'annotation_col' must be cell/sample names of all cells/samples being displayed")
}
if (!is.null(annot.by)) {
annotation_col <- rbind(
as.data.frame(getMetas(object, names.only = FALSE)[cells.use, annot.by, drop = FALSE]),
annotation_col[cells.use, , drop=FALSE])
}
# Set title (off = NA in pheatmap)
if (is.null(main)) {
main <- NA
}
### Prep inputs for heatmap contructor calls
args <- .prep_ditto_heatmap(
data, cells.use, all.cells, cell.names, main,
heatmap.colors, scaled.to.max, heatmap.colors.max.scaled, annot.colors,
annotation_col, annotation_colors, highlight.features, show_colnames,
show_rownames, scale, cluster_cols, border_color, legend_breaks,
breaks, ...)
if (data.out) {
OUT <- args
} else if (complex) {
.error_if_no_complexHm()
OUT <- do.call(ComplexHeatmap::pheatmap, args)
} else {
OUT <- do.call(pheatmap::pheatmap, args)
}
OUT
}
.prep_ditto_heatmap <- function(
data,
cells.use,
all.cells,
cell.names,
main,
heatmap.colors,
scaled.to.max,
heatmap.colors.max.scaled,
annot.colors,
annotation_col,
annotation_colors,
highlight.features,
show_colnames,
show_rownames,
scale,
cluster_cols,
border_color,
legend_breaks,
breaks,
...) {
# Create the base pheatmap inputs
args <- list(
mat = data, main = main, show_colnames = show_colnames,
show_rownames = show_rownames, color = heatmap.colors,
cluster_cols = cluster_cols, border_color = border_color,
scale = scale, breaks = breaks, legend_breaks = legend_breaks, ...)
# Adjust data
if (scaled.to.max) {
args <- .scale_to_max(args, heatmap.colors.max.scaled)
}
# Add annotation_col / annotation_colors only if needed
if (ncol(annotation_col)>0 || !is.null(args$annotation_row)) {
if (ncol(annotation_col)>0) {
args$annotation_col <- annotation_col[colnames(args$mat),, drop = FALSE]
}
args$annotation_colors <- annotation_colors
# Add any missing annotation colors
args <- .make_heatmap_annotation_colors(args, annot.colors)
}
# Make a labels_row input for displaying only certain genes/variables if given to 'highlight.features'
if (!(is.null(highlight.features)) && sum(highlight.features %in% rownames(data))>0) {
highlight.features <- highlight.features[highlight.features %in% rownames(data)]
args$labels_row <- rownames(data)
#Overwrite all non-highlight genes rownames to ""
args$labels_row[-(match(highlight.features,rownames(data)))] <- ""
args$show_rownames <- TRUE
}
# Add cell/sample/row names unless provided separately by user
if(is.null(args$labels_col) && !is.null(cell.names)) {
args$labels_col <- as.character(cell.names[colnames(args$mat)])
args$show_colnames <- TRUE
}
args
}
.scale_to_max <- function(args, heatmap.colors.max.scaled) {
# Max scales the data matrix,
# addss max-sclaing-colors
# adjusts the color and legend breaks accordingly (unless set by user)
maxs <- apply(args$mat,1,max)
args$mat <- args$mat/maxs
args$scale <- "none"
args$color <- heatmap.colors.max.scaled
if (is.na(args$legend_breaks)) {
args$legend_breaks <- seq(0, 1, 0.2)
}
if (is.na(args$breaks)) {
args$breaks <- seq(0, 1, length.out = length(args$color)+1)
}
args
}
# This next function creates pheatmap annotations_colors dataframe
# list of character vectors, all named.
# vector names = annotation titles
# vector members' (colors') names = annotation identities
.make_heatmap_annotation_colors <- function(args, annot.colors) {
# Extract a default color-set
annot.colors.d <- annot.colors
annot.colors.n <- rev(annot.colors)
# Initiate variables
next.color.index.discrete <- 1
next.color.index.numeric <- 1
col_colors <- NULL
row_colors <- NULL
user.provided <- names(args$annotation_colors)
# Columns First (if there)
if (!is.null(args$annotation_col) && ncol(args$annotation_col)>0) {
make.these <- !(colnames(args$annotation_col) %in% user.provided)
if (any(make.these)) {
dfcolors_out <- .pick_colors_for_df(
args$annotation_col[,make.these, drop = FALSE],
next.color.index.discrete, next.color.index.numeric,
annot.colors.d, annot.colors.n)
col_colors <- dfcolors_out$df_colors
next.color.index.discrete <- dfcolors_out$next.color.index.discrete
next.color.index.numeric <- dfcolors_out$next.color.index.numeric
}
}
# Rows Second (if there)
if (!is.null(args$annotation_row)) {
make.these <- !(colnames(args$annotation_row) %in% user.provided)
if (any(make.these)) {
dfcolors_out <- .pick_colors_for_df(
args$annotation_row[,make.these, drop = FALSE],
next.color.index.discrete, next.color.index.numeric,
annot.colors.d, annot.colors.n)
row_colors <- dfcolors_out$df_colors
}
}
# Combine new with user.provided
args$annotation_colors <- c(
args$annotation_colors, col_colors, row_colors)
args
}
# Interpret annotations dataframe,
# Pick, name, and add colors.
.pick_colors_for_df <- function(
annotation_df,
next.color.index.discrete, next.color.index.numeric,
annot.colors.d, annot.colors.n
) {
df_colors <- list()
for (i in seq_len(ncol(annotation_df))){
# Make new colors
if(!is.numeric(annotation_df[,i])){
# Discrete, determine the distinct contents of the annotation first
in.this.annot <- levels(as.factor(annotation_df[,i]))
# Take colors for each, and name them.
new.colors <- annot.colors.d[
seq_along(in.this.annot) + next.color.index.discrete - 1
]
names(new.colors) <- in.this.annot
next.color.index.discrete <-
next.color.index.discrete + length(in.this.annot)
} else {
# Numeric, just need colors for min (white) and max
new.colors <-c("white",annot.colors.n[next.color.index.numeric])
next.color.index.numeric <- next.color.index.numeric + 1
}
# Add the new colors as the list
df_colors <- c(
df_colors,
list(new.colors))
}
names(df_colors) <- names(annotation_df)
list(df_colors = df_colors,
next.color.index.discrete = next.color.index.discrete,
next.color.index.numeric = next.color.index.numeric)
}
# Get the heatmap data matrix.
.get_heatmap_data <- function(object, genes, metas, assay, slot, cells.use) {
if (!is.null(genes)) {
data <- as.matrix(.which_data(assay,slot,object)[genes,cells.use])
} else {
data <- NULL
}
if (!is.null(metas)) {
met.data <- as.matrix(t(getMetas(object, names.only = FALSE)[cells.use, metas]))
data <- rbind(data, met.data)
}
if (is.null(data)) {
stop("No 'genes' or 'metas' requested")
}
if (any(rowSums(data)==0)) {
data <- data[rowSums(data)!=0,]
if (nrow(data)==0) {
stop("No target genes/metadata features have non-zero values in the 'cells.use' subset")
}
warning("Gene(s) or metadata removed due to absence of non-zero values within the 'cells.use' subset")
}
data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.