Nothing
plotGainingH <- function(deco, data, ids, print.annot = FALSE,
orig.classes = TRUE) {
if (all(!ids %in% rownames(deco@featureTable))) {
stop("ERROR: Any provided IDs were found as significant by DECO.")
}
if (any(ids %in% rownames(deco@featureTable))) {
msg1 <- c("NOTE: Following IDs have not been found by DECO, so they
will be not plotted:")
msg2 <- paste(" ", ids[!(ids %in% rownames(deco@featureTable))], "\n ")
}
message(paste(msg1, msg2, sep = "\n"))
if (print.annot & "SYMBOL" %in% colnames(featureTable(deco))) {
msg <- "NOTE: IDs have been mapped to HGNC symbol."
name <- deco@featureTable[ids[ids %in% rownames(deco@featureTable)], "SYMBOL"]
names(name) <- ids[ids %in% rownames(deco@featureTable)]
} else {
msg <- "NOTE: Original feature IDs will be used."
name <- ids[ids %in% rownames(deco@featureTable)]
names(name) <- name
}
message(msg)
## Type of analysis run
analysis <- .analysisType(deco)
if (analysis == "Unsupervised" & orig.classes) {
orig.classes <- FALSE
message("NOTE: Unsupervised analysis is not associated to original classes,
DECO subclasses will be represented.")
}
if (orig.classes) {
classes <- deco@classes
} else {
if (analysis == "Binary") {
classes <- c(
deco@NSCAcluster[[1]]$samplesSubclass[, 1],
deco@NSCAcluster[[2]]$samplesSubclass[, 1]
)
} else {
classes <- deco@NSCAcluster[[1]]$samplesSubclass[, 1]
}
}
## Color
color <- jColor(cbind(sort(classes)))
## Plotting
for (id in ids[ids %in% rownames(deco@featureTable)]) {
if (analysis == "Binary") {
y <- c(
deco@NSCAcluster[[1]]$NSCA$h[id, ],
deco@NSCAcluster[[2]]$NSCA$h[id, ]
)
} else {
y <- deco@NSCAcluster[[1]]$NSCA$h[id, ]
}
x <- data[id, names(y)]
d <- data.frame(x, y)
colnames(d) <- c("omic.data", "h.statistic")
plot1 <- ggplot(
data.frame(d, classes = classes[rownames(d)]),
aes(y = omic.data, x = h.statistic, color = classes)
) + geom_point() +
ggtitle(paste(name[id], "raw statistics")) +
xlab("h-statistic") + ylab("omic data") +
geom_smooth(method = "loess", span = 1, se = FALSE) + theme_minimal() +
scale_color_manual(values = adjustcolor(names(color$ty), 0.7))
d2 <- data.frame(apply(d, 2, function(x)
rank(x, ties.method = "random")), classes = classes[rownames(d)])
plot2 <- ggplot(d2, aes(y = omic.data, x = h.statistic, color = classes)) +
geom_point() + ggtitle(paste(name[id], "rankings")) +
xlab("ranking h-statistic") + ylab("ranking omic data") +
geom_smooth(method = "loess", span = 1, se = FALSE) + theme_minimal() +
scale_color_manual(values = adjustcolor(names(color$ty), 0.7))
abc <- by(d2[, seq_len(2)], classes[rownames(d2)], data.frame)
df <- lapply(names(abc), function(x) cbind(name = x, abc[[x]]))
df <- reshape2::melt(do.call(rbind, df), id = "name")
colnames(df) <- c("classes", "stat", "ranking")
plot3 <- ggplot(df, aes(x = stat, y = ranking, color = classes)) +
geom_boxplot(outlier.alpha = 0.6, col = rep(names(color$ty), each = 2), lwd = 0.5) +
facet_grid(~classes) + theme_minimal()
suppressWarnings(gridExtra::grid.arrange(plot1, plot2, plot3,
layout_matrix = matrix(c(1, 2, 3, 3), byrow = TRUE, nrow = 2))
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.