Nothing
#' getSamples
#'
#' Gathers the sample names to be used within DEBrowser.
#'
#' @param cnames, names of the samples
#' @param index, starting column in a tab separated file
#' @return choices
#' @export
#'
#' @examples
#' x <- getSamples()
#'
getSamples <- function (cnames = NULL, index = 1) {
m <- NULL
if (!is.null(cnames)) {
cn <- cnames[index:length(cnames)]
m <- as.list(NULL)
for (i in seq(cn)) {
m[i] <- cn[i]
}
}
m
}
#' prepDEOutput
#'
#' Prepares the output data from DE analysis to be used within
#' DEBrowser
#'
#' @param data, loaded dataset
#' @param cols, columns
#' @param conds, conds
#' @param inputconds, inputconds
#' @param i, selected comparison number
#' @param input, input
#' @return data
#' @export
#'
#' @examples
#' x <- prepDEOutput()
#'
prepDEOutput <- function(data = NULL, cols = NULL,
conds = NULL, inputconds=NULL, i=NULL, input = NULL) {
if (is.null(data)) return (NULL)
if (length(cols) != length(conds)) return(NULL)
params <- inputconds$demethod_params[i]
de_res <- runDE(data, cols, conds, params)
de_res <- data.frame(de_res)
}
#' applyFilters
#'
#' Applies filters based on user selected parameters to be
#' displayed within the DEBrowser.
#'
#' @param filt_data, loaded dataset
#' @param cols, selected samples
#' @param conds, seleced conditions
#' @param input, input parameters
#' @return data
#' @export
#'
#' @examples
#' x <- applyFilters()
#'
applyFilters <- function(filt_data = NULL, cols = NULL, conds=NULL,
input = NULL){
if (is.null(input$padj) || is.null(input$foldChange)
|| is.null(filt_data)) return(NULL)
compselect <- 1
if (!is.null(input$compselect) )
compselect <- as.integer(input$compselect)
x <- paste0("Cond", 2*compselect - 1)
y <- paste0("Cond", 2*compselect)
norm_data <- getNormalizedMatrix(filt_data[, cols],
input$norm_method)
g <- data.frame(cbind(cols, conds))
if (length(as.vector(g[g$conds == x, "cols"])) > 1 )
filt_data$x <- log10(rowMeans(norm_data[,
as.vector(g[g$conds == x, "cols"])]) + 0.1)
else
filt_data$x <- log10(norm_data[,
as.vector(g[g$conds == x, "cols"])] + 0.1)
if (length(as.vector(g[g$conds == y, "cols"])) > 1 )
filt_data$y <- log10(rowMeans(norm_data[,
as.vector(g[g$conds == y, "cols"])]) + 0.1)
else
filt_data$y <- log10(norm_data[,
as.vector(g[g$conds == y, "cols"])] + 0.1)
filt_data[,cols] <- norm_data
padj_cutoff <- as.numeric(input$padj)
foldChange_cutoff <- as.numeric(input$foldChange)
m <- filt_data
# Add column which says whether a gene significant or not
m$Legend <- character(nrow(m))
m$Size <- character(nrow(m))
m[, "Size"] <- "40"
m$Legend <- "NS"
if (input$dataset == "up" || input$dataset == "up+down" || input$dataset == "selected")
m$Legend[m$foldChange >= foldChange_cutoff &
m$padj <= padj_cutoff] <- "Up"
if (input$dataset == "down" || input$dataset == "up+down" || input$dataset == "selected")
m$Legend[m$foldChange <= (1 / foldChange_cutoff) &
m$padj <= padj_cutoff] <- "Down"
if (input$dataset == "most-varied" && !is.null(cols)) {
most_varied <- getMostVariedList(m, cols, input)
m[rownames(most_varied), c("Legend")] <- "MV"
}
if (!is.null(input$genesetarea) && input$genesetarea != ""
&& input$methodtabs == "panel1") {
genelist <- getGeneSetData(m, c(input$genesetarea))
m[rownames(genelist), "Legend"] <- "GS"
m[rownames(genelist), "Size"] <- "100"
tmp <- m["Legend"=="GS", ]
tmp1 <- m["Legend"!="GS", ]
m <- rbind(tmp1, tmp)
}
m
}
#' getSelectedDatasetInput
#'
#' Gathers the user selected dataset output to be displayed.
#'
#' @param rdata, filtered dataset
#' @param getSelected, selected data
#' @param getMostVaried, most varied data
#' @param mergedComparison, merged comparison data
#' @param input, input parameters
#' @return data
#' @export
#'
#' @examples
#' x <- getSelectedDatasetInput()
#'
getSelectedDatasetInput<-function(rdata = NULL, getSelected = NULL,
getMostVaried = NULL, mergedComparison = NULL,
input = NULL) {
if (is.null(rdata)) return (NULL)
m <- rdata
if (input$dataset == "up") {
m <- getUp(rdata)
} else if (input$dataset == "down") {
m <- getDown(rdata)
} else if (input$dataset == "up+down") {
m <- getUpDown(rdata)
} else if (input$dataset == "alldetected") {
m <- rdata
} else if (input$dataset == "selected" && !is.null(input$selectedplot)) {
m <- getSelected
} else if (input$dataset == "most-varied") {
m <- rdata[rownames(getMostVaried), ]
} else if (input$dataset == "comparisons") {
m <- mergedComparison
} else if (input$dataset == "searched") {
m <- getSearchData(rdata, input)
}
m
}
#' getMostVariedList
#'
#' Calculates the most varied genes to be used for specific plots
#' within the DEBrowser.
#'
#' @param datavar, loaded dataset
#' @param cols, selected columns
#' @param input, input
#' @return data
#' @export
#'
#' @examples
#' x <- getMostVariedList()
#'
getMostVariedList <- function(datavar = NULL, cols = NULL, input = NULL){
if (is.null(datavar)) return (NULL)
topn <- as.integer(as.numeric(input$topn))
filtvar <- datavar[rowSums(datavar[,cols]) >
as.integer(as.numeric(input$mincount)),]
cv<-cbind(apply(filtvar, 1, function(x)
(sd(x,na.rm=TRUE)/mean(x,na.rm=TRUE))), 1)
colnames(cv)<-c("coeff", "a")
cvsort<-cv[order(cv[,1],decreasing=TRUE),]
topindex<-nrow(cvsort)
if (topindex > topn) topindex <- topn
cvsort_top <- head(cvsort, topindex)
selected_var <- data.frame(datavar[rownames(cvsort_top),])
}
#' getSearchData
#'
#' search the geneset in the tables and return it
#'
#' @param dat, table data
#' @param input, input params
#' @return data
#' @export
#'
#' @examples
#' x <- getSearchData()
#'
getSearchData <- function(dat = NULL, input = NULL)
{
if (is.null(dat)) return(NULL)
if (input$genesetarea != ""){
dat <- getGeneSetData(dat, c(input$genesetarea))
}
dat
}
#' getGeneSetData
#'
#' Gathers the specified gene set list to be used within the
#' DEBrowser.
#'
#' @param data, loaded dataset
#' @param geneset, given gene set
#' @return data
#' @export
#'
#' @examples
#' x <- getGeneSetData()
#'
getGeneSetData <- function(data = NULL, geneset = NULL) {
if (is.null(data)) return (NULL)
geneset1 <- unique(unlist(strsplit(geneset, split="[:;, \t\n\t]")))
geneset2 <- geneset1[geneset1 != ""]
if(length(geneset2) > 3)
geneset2 <- paste0("^", geneset2, "$")
dat1 <- as.data.frame(data)
if(!("ID" %in% names(dat1)))
dat2 <- addID(dat1)
else
dat2 <- dat1
dat2$ID<-factor(as.character(dat2$ID))
geneset4 <- unique(as.vector(unlist(lapply(toupper(geneset2),
function(x){ sapply(dat2[(grepl(x, toupper(dat2[,"ID"]))), "ID"],
as.character) }))))
retset <- data.frame(dat2[geneset4, ])
retset
}
#' getUp
#' get up regulated data
#'
#' @param filt_data, filt_data
#' @return data
#' @export
#'
#' @examples
#' x <- getUp()
#'
getUp <- function(filt_data = NULL){
if(is.null(filt_data)) return(NULL)
filt_data[
filt_data[, "Legend"] == "Up" |
filt_data[, "Legend"] == "GS", ]
}
#' getDown
#' get down regulated data
#'
#' @param filt_data, filt_data
#' @return data
#' @export
#'
#' @examples
#' x <- getDown()
#'
getDown <- function(filt_data = NULL){
if(is.null(filt_data)) return(NULL)
filt_data[
filt_data[, "Legend"] == "Down"|
filt_data[, "Legend"] == "GS", ]
}
#' getUpDown
#' get up+down regulated data
#'
#' @param filt_data, filt_data
#' @return data
#' @export
#'
#' @examples
#' x <- getUpDown()
#'
getUpDown <- function(filt_data = NULL){
if(is.null(filt_data)) return(NULL)
filt_data[
filt_data[, "Legend"] == "Up" |
filt_data[, "Legend"] == "Down"|
filt_data[, "Legend"] == "GS", ]
}
#' getDataForTables
#' get data to fill up tables tab
#'
#' @param input, input parameters
#' @param init_data, initial dataset
#' @param filt_data, filt_data
#' @param selected, selected genes
#' @param getMostVaried, most varied genes
#' @param mergedComp, merged comparison set
#' @param explainedData, pca gene set
#' @return data
#' @export
#'
#' @examples
#' x <- getDataForTables()
#'
getDataForTables <- function(input = NULL, init_data = NULL,
filt_data = NULL, selected = NULL,
getMostVaried = NULL, mergedComp = NULL,
explainedData = NULL){
if (is.null(init_data )) return(NULL)
if (is.null(filt_data)) filt_data <- init_data
pastr <- "padj"
fcstr <- "foldChange"
dat <- NULL
if (input$dataset == "alldetected"){
dat <- getSearchData(filt_data, input)
}
else if (input$dataset == "up+down"){
if (!is.null(filt_data))
dat <- getSearchData(getUpDown(filt_data), input)
}
else if (input$dataset == "up"){
if (!is.null(filt_data))
dat <- getSearchData(getUp(filt_data), input)
}
else if (input$dataset == "down"){
if (!is.null(filt_data))
dat <- getSearchData(getDown(filt_data), input)
}
else if (input$dataset == "selected"){
dat <- getSearchData(selected, input)
}
else if (input$dataset == "most-varied"){
if (!is.null(filt_data)){
d <- filt_data[rownames(getMostVaried),]
}else{
d <- init_data[rownames(getMostVaried),]
}
dat <- getSearchData(d, input)
}
else if (input$dataset == "comparisons"){
if (is.null(mergedComp)) return(NULL)
fcstr<-colnames(mergedComp)[grepl("foldChange", colnames(mergedComp))]
pastr<-colnames(mergedComp)[grepl("padj", colnames(mergedComp))]
dat <- getSearchData(mergedComp, input)
}
else if (input$dataset == "searched"){
dat <- getSearchData(init_data, input)
}
list(dat, pastr, fcstr)
}
#' getMergedComparison
#'
#' Gathers the merged comparison data to be used within the
#' DEBrowser.
#' @param dc, data container
#' @param nc, the number of comparisons
#' @param input, input params
#' @return data
#' @export
#'
#' @examples
#' x <- getMergedComparison()
#'
getMergedComparison <- function(dc = NULL, nc = NULL, input = NULL){
if (is.null(dc)) return (NULL)
mergeresults <- c()
mergedata <- c()
allsamples <- c()
for ( ni in seq(1:nc)) {
tmp <- dc[[ni]]$init_data[,c("foldChange", "padj")]
samples <- dc[[ni]]$cols
tt <- paste0("C", (2*ni-1),".vs.C",(2*ni))
fctt <- paste0("foldChange.", tt)
patt <- paste0("padj.", tt)
colnames(tmp) <- c(fctt, patt)
if(ni == 1){
allsamples <- samples
mergeresults <- tmp
mergedata <- dc[[ni]]$init_data[,samples]
}
else{
mergeresults[,fctt] <- character(nrow(tmp))
mergeresults[,patt] <- character(nrow(tmp))
mergeresults[rownames(tmp),c(fctt, patt)] <- tmp[,c(fctt, patt)]
mergeresults[rownames(tmp),patt] <- tmp[,patt]
mergeresults[is.na(mergeresults[,fctt]),fctt] <- 1
mergeresults[is.na(mergeresults[,patt]),patt] <- 1
remaining_samples <- dc[[ni]]$cols[!(samples %in% colnames(mergedata))]
allsamples <- unique(c(allsamples, remaining_samples))
mergedata <- cbind(mergedata, dc[[ni]]$init_data[,remaining_samples])
colnames(mergedata) <- allsamples
}
}
mergedata[,allsamples] <- getNormalizedMatrix(mergedata[,allsamples], input$norm_method)
cbind(mergedata, mergeresults)
}
#' applyFiltersToMergedComparison
#'
#' Gathers the merged comparison data to be used within the
#' DEBrowser.
#'
#' @param merged, merged data
#' @param nc, the number of comparisons
#' @param input, input params
#' @return data
#' @export
#'
#' @examples
#' x <- applyFiltersToMergedComparison()
#'
applyFiltersToMergedComparison <- function (merged = NULL,
nc = NULL, input = NULL)
{
if (is.null(merged)) return (NULL)
padj_cutoff <- as.numeric(input$padj)
foldChange_cutoff <- as.numeric(input$foldChange)
if (is.null(merged$Legend)){
merged$Legend <- character(nrow(merged))
merged$Legend <- "NS"
}
for ( ni in seq(1:nc)) {
tt <- paste0("C", (2*ni-1),".vs.C",(2*ni))
merged[which(as.numeric(merged[,c(paste0("foldChange.", tt))]) >=
foldChange_cutoff & as.numeric(merged[,c(paste0("padj.", tt))]) <=
padj_cutoff), "Legend"] <- "Sig"
merged[which(as.numeric(merged[,c(paste0("foldChange.", tt))]) <=
1/foldChange_cutoff & as.numeric(merged[,c(paste0("padj.", tt))]) <=
padj_cutoff), "Legend"] <- "Sig"
}
print(head(merged))
merged
}
#' removeCols
#'
#' remove unnecessary columns
#'
#' @param cols, columns that are going to be removed from data frame
#' @param dat, data
#' @return data
#' @export
#'
#' @examples
#' x <- removeCols()
#'
removeCols <- function( cols = NULL, dat = NULL) {
if (is.null(dat)) return (NULL)
for (colnum in seq(1:length(cols))){
if (cols[colnum] %in% colnames(dat) )
dat[, cols[colnum]]<- NULL
}
dat
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.