R/vc_score_h.R

Defines functions vc_score_h

Documented in vc_score_h

#'Computes variance component test statistic for homogeneous trajectory
#'
#'This function computes an approximation of the variance component test for
#'homogeneous trajectory based on the asymptotic distribution of a mixture of
#'\eqn{\chi^{2}}s using Davies method from \code{\link[CompQuadForm]{davies}}
#'
#'@keywords internal
#'
#'@param y a numeric matrix of dim \code{g x n} containing the raw or
#'normalized RNA-seq counts for g genes from \code{n} samples.
#'
#'@param x a numeric design matrix of dim \code{n x p} containing the \code{p}
#'covariates to be adjusted for
#'
#'@param indiv a vector of length \code{n} containing the information for
#'attributing each sample to one of the studied individuals. Coerced
#'to be a \code{factor}.
#'
#'@param phi a numeric design matrix of size \code{n x K} containing the
#'\code{K} longitudinal variables to be tested (typically a vector of time
#'points or functions of time)
#'
#'@param w a vector of length \code{n} containing the weights for the \code{n}
#'samples, corresponding to the inverse of the diagonal of the estimated
#'covariance matrix of y.
#'
#'@param Sigma_xi a matrix of size \code{K x K} containing the covariance matrix
#'of the \code{K} random effects corresponding to \code{phi}.
#'
#'@param na_rm logical: should missing values (including \code{NA} and
#'\code{NaN}) be omitted from the calculations? Default is \code{FALSE}.
#'
#'@return A list with the following elements:\itemize{
#'   \item \code{score}: approximation of the set observed score
#'   \item \code{q}: observation-level contributions to the score
#'   \item \code{q_ext}: pseudo-observations used to compute covariance
#'   taking into account the contributions of OLS estimates
#'   \item \code{gene_scores}: approximation of the individual gene scores
#' }
#'
#'
#'@examples
#'set.seed(123)
#'
#'##generate some fake data
#'########################
#'ng <- 100
#'nindiv <- 30
#'nt <- 5
#'nsample <- nindiv*nt
#'tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample)
#'tim <- cbind(tim, tim^2)
#'sigma <- 5
#'b0 <- 10
#'
#'#under the null:
#'beta1 <- rnorm(n=ng, 0, sd=0)
#'#under the (heterogen) alternative:
#'beta1 <- rnorm(n=ng, 0, sd=0.1)
#'#under the (homogen) alternative:
#'beta1 <- rnorm(n=ng, 0.06, sd=0)
#'
#'y.tilde <- b0 + rnorm(ng, sd = sigma)
#'y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) +
#'       matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE)*
#'           matrix(rep(tim, ng), ncol=ng, nrow=nsample, byrow=FALSE) +
#'       matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample,
#'              byrow=FALSE)
#'       )
#'myindiv <- rep(1:nindiv, each=nt)
#'x <- cbind(1, myindiv/2==floor(myindiv/2))
#'myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng)
#'
#'#run test
#'score_homogen <- vc_score_h(y, x, phi=tim, indiv=myindiv,
#'                            w=myw, Sigma_xi=cov(tim))
#'score_homogen$score
#'
#'score_heterogen <- vc_score(y, x, phi=tim, indiv=myindiv,
#'                            w=myw, Sigma_xi=cov(tim))
#'score_heterogen$score
#'
#'scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
#'                                  w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
#'                                  Sigma_xi=cov(tim),
#'                                  homogen_traj = TRUE)
#'scoreTest_homogen$set_pval
#'scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv,
#'                                                          each=nt),
#'                                    w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
#'                                    Sigma_xi=cov(tim),
#'                                    homogen_traj = FALSE)
#'scoreTest_heterogen$set_pval
#'
#'@seealso \code{\link[CompQuadForm]{davies}}
#'@importFrom CompQuadForm davies
#'
#'@export
vc_score_h <- function(y, x, indiv, phi, w, Sigma_xi = diag(ncol(phi)),
                       na_rm = FALSE) {

    ## validity checks
    if (sum(!is.finite(w)) > 0) {
        stop("At least 1 non-finite weight in 'w'")
    }

    ## dimensions check------

    stopifnot(is.matrix(y))
    stopifnot(is.matrix(x))
    stopifnot(is.matrix(phi))

    g <- nrow(y)  # the number of genes measured
    n <- ncol(y)  # the number of samples measured
    p <- ncol(x)  # the number of covariates
    n_t <- ncol(phi)  # the number of time bases
    stopifnot(nrow(x) == n)
    stopifnot(nrow(w) == g)
    stopifnot(ncol(w) == n)
    stopifnot(nrow(phi) == n)
    stopifnot(length(indiv) == n)


    # the number of random effects
    if (length(Sigma_xi) == 1) {
        K <- 1
        Sigma_xi <- matrix(Sigma_xi, K, K)
    } else {
        K <- nrow(Sigma_xi)
        stopifnot(ncol(Sigma_xi) == K)
    }
    stopifnot(n_t == K)


    ## data formating ------
    indiv <- as.factor(indiv)
    nb_indiv <- length(levels(indiv))

    y_T <- t(y)

    ## x_tilde_list <- y_tilde_list <- Phi_list <- list()
    ## for (i in 1:nb_indiv) {
    ##      select <- indiv==levels(indiv)[i]
    ##      n_i <- length(which(select))
    ##      x_i <- x[select,]
    ##      y_i <- y_T[select,]
    ##      phi_i <- phi[select,]
    ##      Phi_list[[i]] <- do.call(rbind, replicate(g, phi_i,
    ##                               simplify = FALSE))
    ##      x_tilde_list[[i]] <- matrix(data=rep(x_i, each=g), ncol = p)
    ##      y_tilde_list[[i]] <- matrix(y_i, ncol=1) }
    ## x_tilde <- do.call(rbind, x_tilde_list)
    ## y_tilde <- o.call(rbind, y_tilde_list)
    ## Phi <- do.call(rbind, Phi_list)
    ## alpha <- solve(t(x_tilde)%*%x_tilde)%*%t(x_tilde)%*%y_tilde
    ## mu_new <- x_tilde %*% alpha
    ## y_mu <- y_tilde - mu_new


    alpha <- solve(crossprod(x)) %*% t(x) %*% rowMeans(y_T, na.rm = na_rm)
    yt_mu <- y_T - do.call(cbind, replicate(g, x %*% alpha, simplify = FALSE))


    ## test statistic computation ------
    sig_xi_sqrt <- (Sigma_xi * diag(K)) %^% (-0.5)
    # sig_xi_sqrt <- (Sigma_xi %^% (-0.5))

    ## xtx_inv <- solve(t(x_tilde) %*% x_tilde)
    ## long_indiv <- rep(indiv, each = g)
    ## q <- matrix(NA, nrow=nb_indiv, ncol=K)
    ## XT_i <- array(NA, c(nb_indiv, p, K))
    ## U <- matrix(NA, nrow = nb_indiv, ncol = p)
    ## for (i in 1:nb_indiv){ #for all the genes at once
    ##      select <- indiv==levels(indiv)[i]
    ##      long_select <- long_indiv==levels(indiv)[i]
    ##      y_mu_i <- as.vector(y_mu[long_select,])
    ##      y_tilde_i <- c(y_ij)
    ##      x_tilde_i <- x_tilde[long_select,]
    ##      sigma_eps_inv_diag <- c(t(w)[select,])
    ##      T_i <- sigma_eps_inv_diag*(Phi[long_select,] %*% sig_xi_sqrt)
    ##      q[i,] <- c(y_mu_i %*% T_i)
    ##      XT_i[i,,] <- t(x_tilde_i) %*% T_i
    ##      U[i,] <- xtx_inv %*% t(x_tilde_i) %*% y_mu_i
    ## }
    ## XT <- colMeans(XT_i)
    ## q_ext <- q - U %*% XT

    sig_eps_inv_T <- t(w)
    phi_sig_xi_sqrt <- phi %*% sig_xi_sqrt
    T_fast <- do.call(cbind, replicate(K, sig_eps_inv_T, simplify = FALSE)) *
        matrix(apply(phi_sig_xi_sqrt, 2, rep, g), ncol = g * K)
    q_fast <- do.call(cbind, replicate(K, yt_mu, simplify = FALSE)) * T_fast

    if (length(levels(indiv)) > 1) {
        indiv_mat <- stats::model.matrix(~0 + factor(indiv))
    } else {
        indiv_mat <- matrix(as.numeric(indiv), ncol = 1)
    }

    if (na_rm & sum(is.na(q_fast)) > 0) {
        q_fast[is.na(q_fast)] <- 0
    }
    q <- crossprod(indiv_mat, q_fast)
    XT_fast <- t(x) %*% T_fast/nb_indiv
    avg_xtx_inv_tx <- nb_indiv * tcrossprod(solve(crossprod(x, x)), x)
    U_XT <- matrix(yt_mu, ncol = g * n_t, nrow = n) *
        crossprod(avg_xtx_inv_tx, XT_fast)
    if (na_rm & sum(is.na(U_XT)) > 0) {
        U_XT[is.na(U_XT)] <- 0
    }
    U_XT_indiv <- crossprod(indiv_mat, U_XT)
    q_ext <- q - U_XT_indiv

    qq <- colSums(q, na.rm = na_rm)^2/nb_indiv

    gene_Q <- rowSums(matrix(qq, ncol = K))

    QQ <- sum(qq)  #nb_indiv=nrow(q) # set score

    return(list(score = QQ, q = q, q_ext = q_ext,
                gene_scores_unscaled = gene_Q))
}

Try the dearseq package in your browser

Any scripts or data that you put into this service are public.

dearseq documentation built on Nov. 8, 2020, 5:49 p.m.