Description Usage Arguments Value See Also Examples
This function computes an approximation of the variance component test based
on the asymptotic distribution of a mixture of χ^{2}s using Davies
method from davies
1 2 3 4 5 6 7 8 9 10 11 |
y |
a numeric matrix of dim |
x |
a numeric design matrix of dim |
indiv |
a vector of length |
phi |
a numeric design matrix of size |
w |
a vector of length |
Sigma_xi |
a matrix of size |
genewise_pvals |
a logical flag indicating whether gene-wise p-values
should be returned. Default is |
homogen_traj |
a logical flag indicating whether trajectories should be
considered homogeneous. Default is |
na.rm |
logical: should missing values (including |
A list with the following elements when the set p-value is computed:
set_score_obs
: the approximation of the observed set score
set_pval
: the associated set p-value
or a list with the following elements when gene-wise p-values are computed:
gene_scores_obs
: vector of approximating the observed
gene-wise scores
gene_pvals
: vector of associated gene-wise p-values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | set.seed(123)
##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:(r/4)), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1
#under the null:
b1 <- 0
#under the alternative:
#b1 <- 0.5
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)
#run test
asymTestRes <- vc_test_asym(y, x, phi=cbind(t, t^2),
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=diag(2), indiv=1:r, genewise_pvals=TRUE)
plot(density(asymTestRes$gene_pvals))
quantile(asymTestRes$gene_pvals)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.