Description Usage Arguments Value References See Also Examples
This function computes an approximation of the Variance Component test for a mixture of χ^{2}s using permutations. This is preferable to the asymptotic approximation for small sample sizes. We rely on exact p-values following Phipson and Smyth, 2010 (see References).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
y |
a numeric matrix of dim |
x |
a numeric design matrix of dim |
indiv |
a vector of length |
phi |
a numeric design matrix of size |
w |
a vector of length |
Sigma_xi |
a matrix of size |
n_perm |
the number of perturbations. Default is |
progressbar |
logical indicating wether a progressBar should be displayed when computing permutations (only in interactive mode). |
parallel_comp |
a logical flag indicating whether parallel computation
should be enabled. Only Linux and MacOS are supported, this is ignored on
Windows. Default is |
nb_cores |
an integer indicating the number of cores to be used when
|
genewise_pvals |
a logical flag indicating whether gene-wise p-values
should be returned. Default is |
homogen_traj |
a logical flag indicating whether trajectories should be
considered homogeneous. Default is |
na.rm |
logical: should missing values (including |
A list with the following elements when the set p-value is computed:
set_score_obs
: the approximation of the observed set score
set_pval
: the associated set p-value
or a list with the following elements when gene-wise p-values are computed:
gene_scores_obs
: vector of approximating the observed
gene-wise scores
gene_pvals
: vector of associated gene-wise p-values
ds_fdr
: vector of associated gene-wise discrete false
discovery rates
Phipson B, and Smyth GK (2010). Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular Biology, Volume 9, Issue 1, Article 39. http://www.statsci.org/smyth/pubs/PermPValuesPreprint.pdf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | set.seed(123)
##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:3), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1
#under the null:
b1 <- 0
#under the alternative:
b1 <- 0.5
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)
#run test
permTestRes <- vc_test_perm(y, x, phi=t,
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
indiv=rep(1:4, each=3), n_perm=50, #1000,
parallel_comp = FALSE)
permTestRes$set_pval
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.