Nothing
## ---- eval=FALSE-----------------------------------------------------------
# source("https://bioconductor.org/biocLite.R")
# biocLite("cytofkit")
## ---- message=FALSE--------------------------------------------------------
library("cytofkit")
## ---- eval=FALSE-----------------------------------------------------------
# ?"cytofkit-package"
## ---- eval=FALSE-----------------------------------------------------------
# cytofkit_GUI()
## ---- eval=FALSE-----------------------------------------------------------
# set.seed(100)
# dir <- system.file('extdata',package='cytofkit')
# file <- list.files(dir ,pattern='.fcs$', full=TRUE)
# parameters <- list.files(dir, pattern='.txt$', full=TRUE)
# res <- cytofkit(fcsFiles = file,
# markers = parameters,
# projectName = 'cytofkit_test',
# transformMethod = "cytofAsinh",
# mergeMethod = "ceil",
# fixedNum = 500, ## set at 500 for faster run
# dimReductionMethod = "tsne",
# clusterMethods = c("Rphenograph", "ClusterX"), ## accept multiple methods
# visualizationMethods = c("tsne", "pca"), ## accept multiple methods
# progressionMethod = "isomap",
# clusterSampleSize = 500,
# resultDir = getwd(),
# saveResults = TRUE,
# saveObject = TRUE)
## --------------------------------------------------------------------------
## Loading the FCS data:
dir <- system.file('extdata',package='cytofkit')
file <- list.files(dir ,pattern='.fcs$', full=TRUE)
paraFile <- list.files(dir, pattern='.txt$', full=TRUE)
parameters <- as.character(read.table(paraFile, header = TRUE)[,1])
## File name
file
## parameters
parameters
## --------------------------------------------------------------------------
## Extract the expression matrix with transformation
data_transformed <- cytof_exprsExtract(fcsFile = file,
comp = FALSE,
transformMethod = "cytofAsinh")
## If analysing flow cytometry data, you can set comp to TRUE or
## provide a transformation matrix to apply compensation
## If you have multiple FCS files, expression can be extracted and combined
combined_data_transformed <- cytof_exprsMerge(fcsFiles = file, comp=FALSE,
transformMethod = "cytofAsinh",
mergeMethod = "all")
## change mergeMethod to apply different combination strategy
## Take a look at the extracted expression matrix
head(data_transformed[ ,1:3])
## ---- message=FALSE--------------------------------------------------------
## use clustering algorithm to detect cell subsets
## to speed up our test here, we only use 100 cells
data_transformed_1k <- data_transformed[1:100, ]
## run PhenoGraph
cluster_PhenoGraph <- cytof_cluster(xdata = data_transformed_1k, method = "Rphenograph")
## run ClusterX
data_transformed_1k_tsne <- cytof_dimReduction(data=data_transformed_1k, method = "tsne")
cluster_ClusterX <- cytof_cluster(ydata = data_transformed_1k_tsne, method="ClusterX")
## ---- eval=FALSE-----------------------------------------------------------
# ## run DensVM (takes long time, we skip here)
# cluster_DensVM <- cytof_cluster(xdata = data_transformed_1k,
# ydata = data_transformed_1k_tsne, method = "DensVM")
## ---- message=FALSE--------------------------------------------------------
## run FlowSOM with cluster number 15
cluster_FlowSOM <- cytof_cluster(xdata = data_transformed_1k, method = "FlowSOM", FlowSOM_k = 12)
## combine data
data_1k_all <- cbind(data_transformed_1k, data_transformed_1k_tsne,
PhenoGraph = cluster_PhenoGraph, ClusterX=cluster_ClusterX,
FlowSOM=cluster_FlowSOM)
data_1k_all <- as.data.frame(data_1k_all)
## ---- message=FALSE--------------------------------------------------------
## PhenoGraph plot on tsne
cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2",
cluster="PhenoGraph", sampleLabel = FALSE)
## PhenoGraph cluster heatmap
PhenoGraph_cluster_median <- aggregate(. ~ PhenoGraph, data = data_1k_all, median)
cytof_heatmap(PhenoGraph_cluster_median[, 2:37], baseName = "PhenoGraph Cluster Median")
## --------------------------------------------------------------------------
## ClusterX plot on tsne
cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2", cluster="ClusterX", sampleLabel = FALSE)
## ClusterX cluster heatmap
ClusterX_cluster_median <- aggregate(. ~ ClusterX, data = data_1k_all, median)
cytof_heatmap(ClusterX_cluster_median[, 2:37], baseName = "ClusterX Cluster Median")
## --------------------------------------------------------------------------
## FlowSOM plot on tsne
cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2",
cluster="FlowSOM", sampleLabel = FALSE)
## FlowSOM cluster heatmap
FlowSOM_cluster_median <- aggregate(. ~ FlowSOM, data = data_1k_all, median)
cytof_heatmap(FlowSOM_cluster_median[, 2:37], baseName = "FlowSOM Cluster Median")
## ---- message=FALSE--------------------------------------------------------
## Inference of PhenoGraph cluster relatedness
PhenoGraph_progression <- cytof_progression(data = data_transformed_1k,
cluster = cluster_PhenoGraph,
method="isomap", clusterSampleSize = 50,
sampleSeed = 5)
p_d <- data.frame(PhenoGraph_progression$sampleData,
PhenoGraph_progression$progressionData,
cluster = PhenoGraph_progression$sampleCluster,
check.names = FALSE)
## cluster relatedness plot
cytof_clusterPlot(data=p_d, xlab="isomap_1", ylab="isomap_2",
cluster="cluster", sampleLabel = FALSE)
## marker expression profile
markers <- c("(Sm150)Di<GranzymeB>", "(Yb173)Di<Perforin>")
cytof_colorPlot(data=p_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[1], limits = range(p_d[,1:52]))
cytof_colorPlot(data=p_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[2], limits = range(p_d[,1:52]))
cytof_progressionPlot(data=p_d, markers=markers, orderCol="isomap_1", clusterCol = "cluster")
## ---- message=FALSE--------------------------------------------------------
## Inference of ClusterX cluster relatedness
ClusterX_progression <- cytof_progression(data = data_transformed_1k,
cluster = cluster_ClusterX,
method="isomap",
clusterSampleSize = 30,
sampleSeed = 3)
c_d <- data.frame(ClusterX_progression$sampleData,
ClusterX_progression$progressionData,
cluster=ClusterX_progression$sampleCluster,
check.names = FALSE)
## cluster relatedness plot
cytof_clusterPlot(data=c_d, xlab="isomap_1", ylab="isomap_2",
cluster="cluster", sampleLabel = FALSE)
## marker expression profile
markers <- c("(Sm150)Di<GranzymeB>", "(Yb173)Di<Perforin>")
cytof_colorPlot(data=c_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[1], limits = range(c_d[,1:52]))
cytof_colorPlot(data=c_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[2], limits = range(c_d[,1:52]))
cytof_progressionPlot(data=c_d, markers, orderCol="isomap_1", clusterCol = "cluster")
## ---- eval=FALSE-----------------------------------------------------------
# ## save analysis results to FCS file
# cytof_addToFCS(data_1k_all, rawFCSdir=dir, analyzedFCSdir="analysed_FCS",
# transformed_cols = c("tsne_1", "tsne_2"),
# cluster_cols = c("PhenoGraph", "ClusterX", "FlowSOM"))
## --------------------------------------------------------------------------
## See documentation, this function uses the output of main cytofkit cuntion as its input
?cytof_clusterMtrx
## --------------------------------------------------------------------------
cytofkitNews()
## --------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.