Nothing
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
# load consensusDE
library(consensusDE)
# load airway and dm3/Hs transcript database for example annotation
library(airway)
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
library(EnsDb.Hsapiens.v86)
library(org.Hs.eg.db)
data("airway")
## ----echo=TRUE----------------------------------------------------------------
# build a design table that lists the files and their grouping
file_list <- list.files(system.file("extdata", package="GenomicAlignments"),
recursive = TRUE,
pattern = "*bam$",
full = TRUE)
# Prepare a sample table to be used with buildSummarized()
# must be comprised of a minimum of two columns, named "file" and "group",
# with one additional column: "pairs" if the data is paired
sample_table <- data.frame("file" = basename(file_list),
"group" = c("treat", "untreat"))
# extract the path to the bam directory - where to search for files listed in "sample_table"
bam_dir <- as.character(gsub(basename(file_list)[1], "", file_list[1]))
## ----echo=TRUE, warning=FALSE-------------------------------------------------
# NB. force_build = TRUE, is set to allow the Summarized Experiment to be built.
# This will report a Warning message that less than two replicates are present
# in the sample_table.
summarized_dm3 <- buildSummarized(sample_table = sample_table,
bam_dir = bam_dir,
tx_db = TxDb.Dmelanogaster.UCSC.dm3.ensGene,
read_format = "paired",
force_build = TRUE)
## ----echo=TRUE----------------------------------------------------------------
summarized_dm3
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
# for compatability for DE analysis, add "group" and "file" columns
colData(airway)$group <- colData(airway)$dex
colData(airway)$file <- rownames(colData(airway))
# filter low count data
airway_filter <- buildSummarized(summarized = airway,
filter = TRUE)
# for illustration, we only use sa random sample of 1000 transcripts
set.seed(1234)
airway_filter <- sample(airway_filter, 1000)
# call multi_de_pairs()
all_pairs_airway <- multi_de_pairs(summarized = airway_filter,
paired = "unpaired",
ruv_correct = FALSE)
## ----echo=TRUE----------------------------------------------------------------
# To view all the comparisons conducted:
names(all_pairs_airway$merged)
# [1] "untrt-trt"
# to access data of a particular comparison
head(all_pairs_airway$merged[["untrt-trt"]])
## ----echo=TRUE, message=FALSE-------------------------------------------------
# first ensure annotation database in installed
#library(org.Hs.eg.db)
#library(EnsDb.Hsapiens.v86)
# Preloaded summarized file did not contain meta-data of the tx_db. This is important if you want to extract chromosome coordinates. This can be easily updated by rerunning buildSummarized with the tx_db of choice.
airway_filter <- buildSummarized(summarized = airway_filter,
tx_db = EnsDb.Hsapiens.v86,
filter = FALSE)
# call multi_de_pairs(),
# set ensembl_annotate argument to org.Hs.eg.db
all_pairs_airway <- multi_de_pairs(summarized = airway_filter,
paired = "unpaired",
ruv_correct = FALSE,
ensembl_annotate = org.Hs.eg.db)
# to access data of a particular comparison
head(all_pairs_airway$merged[["untrt-trt"]])
## ----echo=TRUE, message=FALSE, warning=TRUE-----------------------------------
# call multi_de_pairs()
all_pairs_airway_ruv <- multi_de_pairs(summarized = airway_filter,
paired = "unpaired",
ruv_correct = TRUE)
# access the summarized experiment (now including the residuals under the "W_1" column)
all_pairs_airway_ruv$summarized@phenoData@data
# view the results, now with RUV correction applied
head(all_pairs_airway_ruv$merged[["untrt-trt"]])
## ----echo=TRUE, message=FALSE-------------------------------------------------
# add "pairs" column to airway_filter summarized object
colData(airway_filter)$pairs <- as.factor(c("pair1", "pair1", "pair2", "pair2", "pair3", "pair3", "pair4", "pair4"))
# run multi_de_pairs in "paired" mode
all_pairs_airway_paired <- multi_de_pairs(summarized = airway_filter,
paired = "paired",
ruv_correct = TRUE)
head(all_pairs_airway_paired$merged[["untrt-trt"]])
## ----echo=TRUE, message=FALSE-------------------------------------------------
all_pairs_airway_paired$voom$fitted[[1]]$design
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
mapped_reads = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
rle = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
pca = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# diag_plots(se_in = all_pairs_airway$summarized,
# name = "airway example data",
# residuals = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
hclust = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
density = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(se_in = airway_filter,
name = "airway example data",
boxplot = TRUE)
## ----echo=TRUE----------------------------------------------------------------
# 1. View all the comparisons conducted
names(all_pairs_airway$merged)
# 2. Extract the data.frame of interest of a particular comparison
comparison <- all_pairs_airway$merged[["untrt-trt"]]
## ----eval=FALSE---------------------------------------------------------------
# # this will not work unless in a list and will stop, producing an error. E.g.
# diag_plots(merged_in = comparison,
# name = "untrt-trt",
# ma = TRUE)
#
# # Error message:
# merged_in is not a list. If you want to plot with one comparison only,
# put the single dataframe into a list as follows. my_list <- list("name"=
# merged_in)
## ----echo=TRUE----------------------------------------------------------------
# 3. Put into a new list as instructed by the error
comparison_list <- list("untrt-trt" = comparison)
# this will not work unless the appropriate columns are labelled
# "ID", "AveExpr", and "Adj_PVal"
# 4. Relabel the columns for plotting
# inspecting the column names reveals that the "Adj_PVal" column needs to be specified.
colnames(comparison_list[["untrt-trt"]])
# Here, we will relabel "edger_adj_p" with "Adj_PVal" to use this p-value, using
# the "gsub" command as follows (however, we could also use one of the others or
# the p_max column)
colnames(comparison_list[["untrt-trt"]]) <- gsub("edger_adj_p", "Adj_PVal",
colnames(comparison_list[["untrt-trt"]]))
# after label
colnames(comparison_list[["untrt-trt"]])
## ----echo=TRUE, message=FALSE-------------------------------------------------
# 5. Plot MA
diag_plots(merged_in = comparison_list,
name = "untrt-trt",
ma = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(merged_in = comparison_list,
name = "untrt-trt",
volcano = TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
diag_plots(merged_in = comparison_list,
name = "untrt-trt",
p_dist = TRUE)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
citation("consensusDE")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.