Nothing
#' Evaluate the influence function
#'
#' @param modelObj The model object
#' @param samples A boolean, should we look at sample variables? Throws an error otherwise
#' @param Dim,View Integers, the dimension and views required
#'
#' @method influence combi
#' @details Especially the influence of the different views on the latent
#' variable or gradient estimation may be of interest. The influence values are
#' not all calculated. Rather, the score values and inverse jacobian are returned
#' so they can easily be calculated
#' @importFrom Matrix diag solve
#' @return A list with components
#' \item{score}{The evaluation of the score function}
#' \item{InvJac}{The inverted jacobian matrix}
influence.combi = function(modelObj, samples = is.null(View), Dim = 1, View = NULL){
with(modelObj, {
if(samples){
lambdaLatent = lambdasLatent[seqM(Dim, normal = FALSE)]
constrained = !is.null(covariates)
if(constrained) covMat = buildCovMat(covariates)$covModelMat
#Find the normalization lagrange mutliplier?
score = Reduce(f = cbind, lapply(seq_along(data), function(i){
if(distributions[[i]] == "gaussian"){
mu = buildMu(offSet = buildOffsetModel(modelObj, i),
latentVar = latentVars[,Dim],
paramEsts = paramEsts[[i]][Dim,], distributions[[i]])
rowMultiply(if(constrained) crossprod(covMat, data[[i]] - mu) else
data[[i]] - mu, paramEsts[[i]][Dim,]/varPosts[[i]])
} else if(distributions[[i]] == "quasi"){
if(compositional[[i]]){
CompMat = buildCompMat(indepModels[[i]]$colMat,
paramEsts[[i]],
latentVar = latentVars, m = Dim,
norm = TRUE)
mu = CompMat * indepModels[[i]]$libSizes
tmpMat = CompMat*(data[[i]]-mu)/meanVarTrends[[Dim]][[i]](CompMat, outerProd = FALSE)*
(matrix(paramEsts[[i]][Dim,], byrow = TRUE, nrow(mu), ncol(mu)) -
c(CompMat %*% paramEsts[[i]][Dim,]))
if(constrained){
tmpMat = crossprod(covMat, tmpMat)
}
return(tmpMat)
} else {
prepMat = prepareScoreMat(mu = mu, data = data[[i]], meanVarTrend = meanVarTrends[[Dim]][[i]])
rowMultiply(if(constrained) crossprod(covMat, prepMat) else prepMat, paramEsts[[i]][Dim,])
}
}})) + (lambdaLatent[1] +
if(Dim==1) 0 else c(latentVars[, seq_len(Dim-1), drop = FALSE] %*% lambdaLatent[-1]))
# Inverse Jacobian
n = if(constrained) ncol(covMat) else nrow(data[[1]])
nLambda1s = if(constrained) nrow(centMat) else 1
Jacobian = buildEmptyJac(n = n, m = Dim,
lower = if(constrained) alphas else latentVars,
nLambda1s = nLambda1s,
normal = constrained, centMat = centMat)
if(constrained){
Jacobian[seq_len(n),seq_len(n)] = rowSums(dims = 2, vapply(seq_along(data), FUN.VALUE = diag(double(n)), function(i){
jacLatentVarsConstr(data = data[[i]], distribution = distributions[[i]],
paramEsts = paramEsts[[i]], offSet = buildOffsetModel(modelObj, i),
latentVar = latentVars[, Dim], meanVarTrend = meanVarTrends[[Dim]][[i]],
varPosts = varPosts[[i]], mm = Dim, covMat = covMat,
latentVarsLower = latentVars[, seq_len(Dim-1)], compositional = compositional[[i]],
indepModel = indepModels[[i]], n = n,
allowMissingness = modelObj$allowMissingness,
paramMats = matrix(paramEsts[[i]][Dim,], byrow = TRUE, nrow(data[[i]]), ncol(data[[i]])))
}))
numCov = ncol(covMat)
Jacobian[seq_len(numCov), numCov+1+nLambda1s] = Jacobian[numCov+1+nLambda1s, seq_len(numCov)] =
2*alphas[seq_len(numCov), Dim]
} else {
diag(Jacobian)[seq_len(n)] = rowSums(vapply(seq_along(data), FUN.VALUE = double(n), function(i){
jacLatentVars(data = data[[i]], distribution = distributions[[i]],
paramEsts = paramEsts[[i]], offSet = buildOffsetModel(modelObj, i),
latentVar = latentVars[, Dim], meanVarTrend = meanVarTrends[[Dim]][[i]],
varPosts = varPosts[[i]], mm = Dim,
latentVarsLower = latentVars[, seq_len(Dim-1)], compositional = compositional[[i]],
indepModel = indepModels[[i]], n = n,
allowMissingness = modelObj$allowMissingness,
paramMats = matrix(paramEsts[[i]][Dim,], byrow = TRUE, nrow(data[[i]]), ncol(data[[i]])))
}))
}
InvJac = solve(Jacobian)[seq_len(n), seq_len(n)]
} else {
stop("Only influence functions of sample variables are implemented currently!\n")
}
# Matrix of all influences becomes too large: return score and
# inverse jacobian and calculate influences on demand
return(list(score = score, InvJac = InvJac))
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.