R/activityScores.R

Defines functions normalize_gene_activities build_composite_gene_activity_matrix build_gene_activity_matrix

Documented in build_gene_activity_matrix normalize_gene_activities

#' Calculate initial Cicero gene activity matrix
#'
#' This function calculates the initial Cicero gene activity matrix. After this
#' function, the activity matrix should be normalized with any comparison
#' matrices using the function \code{\link{normalize_gene_activities}}.
#'
#' @param input_cds Binary sci-ATAC-seq input CDS. The input CDS must have a
#'     column in the fData table called "gene" which is the gene name if the
#'     site is a promoter, and \code{NA} if the site is distal.
#' @param cicero_cons_info Cicero connections table, generally the output of
#'    \code{\link{run_cicero}}. This table is a data frame with three required
#'    columns named "Peak1", "Peak2", and "coaccess". Peak1 and Peak2 contain
#'    coordinates for the two compared elements, and coaccess contains their
#'    Cicero co-accessibility score.
#' @param site_weights NULL or an individual weight for each site in input_cds.
#' @param dist_thresh The maximum distance in base pairs between pairs of sites
#'    to include in the gene activity calculation.
#' @param coaccess_cutoff The minimum Cicero co-accessibility score that should
#'    be considered connected.
#'
#' @return Unnormalized gene activity matrix.
#' @export
#'
#' @examples
#'   data("cicero_data")
#'   data("human.hg19.genome")
#'   sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#'   sample_genome$V2[1] <- 100000
#'   input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#'   input_cds <- detectGenes(input_cds)
#'   input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#'                                reduction_method = 'tSNE',
#'                                norm_method = "none")
#'   tsne_coords <- t(reducedDimA(input_cds))
#'   row.names(tsne_coords) <- row.names(pData(input_cds))
#'   cicero_cds <- make_cicero_cds(input_cds,
#'                                 reduced_coordinates = tsne_coords)
#'   cons <- run_cicero(cicero_cds, sample_genome, sample_num=2)
#'
#'   data(gene_annotation_sample)
#'   gene_annotation_sub <- gene_annotation_sample[,c(1:3, 8)]
#'   names(gene_annotation_sub)[4] <- "gene"
#'   input_cds <- annotate_cds_by_site(input_cds, gene_annotation_sub)
#'   num_genes <- pData(input_cds)$num_genes_expressed
#'   names(num_genes) <- row.names(pData(input_cds))
#'   unnorm_ga <- build_gene_activity_matrix(input_cds, cons)
#'
#'
build_gene_activity_matrix <- function(input_cds,
                                       cicero_cons_info,
                                       site_weights=NULL,
                                       dist_thresh=250000,
                                       coaccess_cutoff=0.25){
    assertthat::assert_that(is(input_cds, "CellDataSet"))
    assertthat::assert_that(is.data.frame(cicero_cons_info))
    assertthat::assert_that(assertthat::has_name(cicero_cons_info, "Peak1"),
                            assertthat::has_name(cicero_cons_info, "Peak2"),
                            assertthat::has_name(cicero_cons_info, "coaccess"))

    assertthat::assert_that(assertthat::has_name(fData(input_cds), "gene"),
                            msg = paste("The fData table of the input CDS must",
                                        "have a column called 'gene'. See",
                                        "documentation for details.",
                                        collapse=" "))

    accessibility_mat <- exprs(input_cds)
    if (is.null(site_weights)) {
        site_weights <- Matrix::rowMeans(accessibility_mat) /
                       Matrix::rowMeans(accessibility_mat)
        site_weights[names(site_weights)] <- 1
    }

    gene_promoter_activity <-
        build_composite_gene_activity_matrix(input_cds,
                                             site_weights,
                                             cicero_cons_info,
                                             dist_thresh=dist_thresh,
                                             coaccess_cutoff=coaccess_cutoff)


    gene_activity_scores <- gene_promoter_activity

    return(gene_activity_scores)
}

build_composite_gene_activity_matrix <- function(input_cds,
                                                 site_weights,
                                                 cicero_cons_info,
                                                 dist_thresh=250000,
                                                 coaccess_cutoff=0.25) {
    accessibility_mat <- exprs(input_cds)
    promoter_peak_table <- fData(input_cds)
    promoter_peak_table$peak <- as.character(row.names(promoter_peak_table))
    promoter_peak_table <-
        promoter_peak_table[!is.na(promoter_peak_table$gene),]
    promoter_peak_table <- promoter_peak_table[,c("peak", "gene")]
    promoter_peak_table$gene <- as.character(promoter_peak_table$gene)

    # Make site_weight matrix
    site_names <- names(site_weights)
    site_weights <- as(Matrix::Diagonal(x=as.numeric(site_weights)),
                      "sparseMatrix")
    row.names(site_weights) <- site_names
    colnames(site_weights) <- site_names

    # Find distance between cicero peaks. If distance already calculated, skip
    if ("dist" %in% colnames(cicero_cons_info) == FALSE) {
        Peak1_cols <- split_peak_names(cicero_cons_info$Peak1)
        Peak2_cols <- split_peak_names(cicero_cons_info$Peak2)
        Peak1_bp <- round((as.integer(Peak1_cols[,3]) +
                          as.integer(Peak1_cols[,2])) / 2)
        Peak2_bp <- round((as.integer(Peak2_cols[,3]) +
                          as.integer(Peak2_cols[,2])) / 2)
        cicero_cons_info$dist <- abs(Peak2_bp - Peak1_bp)
    }

    # Get connections between promoters and distal sites above coaccess
    # threshold
    nonneg_cons <-
        cicero_cons_info[(cicero_cons_info$Peak1 %in%
                          promoter_peak_table$peak |
                          cicero_cons_info$Peak2 %in%
                          promoter_peak_table$peak) &
                          cicero_cons_info$coaccess >= coaccess_cutoff &
                          cicero_cons_info$dist < dist_thresh,]
    nonneg_cons <- nonneg_cons[,c("Peak1", "Peak2", "coaccess")]
    nonneg_cons <- nonneg_cons[!duplicated(nonneg_cons),]

    nonneg_cons$Peak1 <- as.character(nonneg_cons$Peak1)
    nonneg_cons$Peak2 <- as.character(nonneg_cons$Peak2)

    nonneg_cons <- rbind(nonneg_cons,
                        data.frame(Peak1=unique(promoter_peak_table$peak),
                                   Peak2=unique(promoter_peak_table$peak),
                                   coaccess=0))

    # Make square matrix of connections from distal to proximal
    distal_connectivity_matrix <- make_sparse_matrix(nonneg_cons,
                                                    x.name="coaccess")

    # Make connectivity matrix of promoters versus all
    promoter_conn_matrix <-
        distal_connectivity_matrix[unique(promoter_peak_table$peak),]

    # Get list of promoter and distal sites in accessibility mat
    promoter_safe_sites <- intersect(rownames(promoter_conn_matrix),
                                     row.names(accessibility_mat))
    distal_safe_sites <- intersect(colnames(promoter_conn_matrix),
                                     row.names(accessibility_mat))
    distal_safe_sites <- setdiff(distal_safe_sites, promoter_safe_sites)

    # Get accessibility info for promoters
    promoter_access_mat_in_cicero_map <- accessibility_mat[promoter_safe_sites,, drop=FALSE]

    # Get accessibility for distal sites
    distal_activity_scores <- accessibility_mat[distal_safe_sites,, drop=FALSE]

    # Scale connectivity matrix by site_weights
    scaled_site_weights <- site_weights[distal_safe_sites,distal_safe_sites, drop=FALSE]
    total_linked_site_weights <- promoter_conn_matrix[,distal_safe_sites, drop=FALSE] %*%
        scaled_site_weights
    total_linked_site_weights <- 1/Matrix::rowSums(total_linked_site_weights,
                                                na.rm=TRUE)
    total_linked_site_weights[is.finite(total_linked_site_weights) == FALSE] <- 0
    total_linked_site_weights[is.na(total_linked_site_weights)] <- 0
    total_linked_site_weights[is.nan(total_linked_site_weights)] <- 0
    total_linked_site_weights <- Matrix::Diagonal(x=total_linked_site_weights)
    scaled_site_weights <- total_linked_site_weights %*%
        promoter_conn_matrix[,distal_safe_sites, drop=FALSE] %*%
        scaled_site_weights
    scaled_site_weights@x[scaled_site_weights@x > 1] <- 1

    # Multiply distal accessibility by site weights
    distal_activity_scores <- scaled_site_weights %*% distal_activity_scores

    distal_activity_scores <-
        distal_activity_scores[row.names(promoter_access_mat_in_cicero_map),, drop=FALSE]

    # Sum distal and promoter scores
    promoter_activity_scores <- distal_activity_scores +
        promoter_access_mat_in_cicero_map

    # Make and populate final matrix
    promoter_gene_mat <-
        Matrix::sparseMatrix(j=as.numeric(factor(promoter_peak_table$peak)),
                             i=as.numeric(factor(promoter_peak_table$gene)),
                             x=1)
    colnames(promoter_gene_mat) = levels(factor(promoter_peak_table$peak))
    row.names(promoter_gene_mat) = levels(factor(promoter_peak_table$gene))
    promoter_gene_mat <- promoter_gene_mat[,row.names(promoter_activity_scores)]
    gene_activity_scores <- promoter_gene_mat %*% promoter_activity_scores

    return(gene_activity_scores)
}

#' Normalize gene activities
#'
#' Normalize the output of \code{\link{build_gene_activity_matrix}}. Input is
#' either one or multiple gene activity matrices. Any gene activities to be
#' compared amongst each other should be normalized together.
#'
#'
#' @param activity_matrices A gene activity matrix, output from
#'     \code{\link{build_gene_activity_matrix}}, or a list of gene activity
#'     matrices to be normalized together.
#' @param cell_num_genes A named vector of the total number of accessible sites
#'     per cell. Names should correspond to the cell names in the activity
#'     matrices. These values can be found in the "num_genes_expressed" column
#'     of the pData table of the CDS used to calculate the gene activity matrix.
#'
#' @return Normalized activity matrix or matrices.
#' @export
#'
#' @examples
#'   data("cicero_data")
#'   data("human.hg19.genome")
#'   sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#'   sample_genome$V2[1] <- 100000
#'   input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#'   input_cds <- detectGenes(input_cds)
#'   input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#'                                reduction_method = 'tSNE',
#'                                norm_method = "none")
#'   tsne_coords <- t(reducedDimA(input_cds))
#'   row.names(tsne_coords) <- row.names(pData(input_cds))
#'   cicero_cds <- make_cicero_cds(input_cds,
#'                                 reduced_coordinates = tsne_coords)
#'   cons <- run_cicero(cicero_cds, sample_genome, sample_num=2)
#'
#'   data(gene_annotation_sample)
#'   gene_annotation_sub <- gene_annotation_sample[,c(1:3, 8)]
#'   names(gene_annotation_sub)[4] <- "gene"
#'   input_cds <- annotate_cds_by_site(input_cds, gene_annotation_sub)
#'   num_genes <- pData(input_cds)$num_genes_expressed
#'   names(num_genes) <- row.names(pData(input_cds))
#'   unnorm_ga <- build_gene_activity_matrix(input_cds, cons)
#'   cicero_gene_activities <- normalize_gene_activities(unnorm_ga, num_genes)
#'
#'
normalize_gene_activities <- function(activity_matrices,
                                     cell_num_genes){
    if (!is.list(activity_matrices)) {
        scores <- activity_matrices
        normalization_df <- data.frame(cell = colnames(activity_matrices),
                                   cell_group=1)
    } else {
        scores <- do.call(cbind, activity_matrices)

        normalization_df <-
            do.call(rbind,
                lapply(seq_along(activity_matrices),
                    function(x) {
                        data.frame(cell = colnames(activity_matrices[[x]]),
                            cell_group=rep(x, ncol(activity_matrices[[x]])))
                    }))
    }

    scores <- scores[Matrix::rowSums(scores) != 0, Matrix::colSums(scores) != 0]
    normalization_df$cell_group <- factor(normalization_df$cell_group)
    normalization_df$total_activity <- Matrix::colSums(scores)
    normalization_df$total_sites <-
        cell_num_genes[as.character(normalization_df$cell)]

    if (!is.list(activity_matrices)) {
        activity_model <- stats::lm(log(total_activity) ~ log(total_sites),
                                    data=normalization_df)
    } else {
        activity_model <- stats::lm(log(total_activity) ~ log(total_sites) *
                                      cell_group, data=normalization_df)
    }

    normalization_df$fitted_curve <- exp(as.vector(predict(activity_model,
                                                           type="response")))

    size_factors <- log(normalization_df$fitted_curve) /
    mean(log(normalization_df$fitted_curve))

    size_factors <- Matrix::Diagonal(x=1/size_factors)
    row.names(size_factors) <- normalization_df$cell
    colnames(size_factors) <- row.names(size_factors)

    # Adjust the scores by the size factors
    scores <- Matrix::t(size_factors %*% Matrix::t(scores))

    scores@x <- pmin(1e9, exp(scores@x) - 1)

    sum_activity_scores <- Matrix::colSums(scores)

    scale_factors <- Matrix::Diagonal(x=1/sum_activity_scores)
    row.names(scale_factors) <- normalization_df$cell
    colnames(scale_factors) <- row.names(scale_factors)

    scores <- Matrix::t(scale_factors %*% Matrix::t(scores))

    if (!is.list(activity_matrices)) {
        ret <- scores[row.names(activity_matrices), colnames(activity_matrices)]
    } else {
        ret <- lapply(activity_matrices, function(x) {
            scores[row.names(x), colnames(x)]
        })
    }
    return(ret)
}

Try the cicero package in your browser

Any scripts or data that you put into this service are public.

cicero documentation built on Dec. 10, 2020, 2 a.m.