Nothing
# Note: the counts input is to allow future methods to regress on other count data
test_polyenrich_weighted = function(geneset,gpw,n_cores,counts) {
# Restrict our genes/weights/peaks to only those genes in the genesets.
# Here, geneset is not all combined, but GOBP, GOCC, etc.
# i.e. A specific one.
gpw = subset(gpw,gpw$gene_id %in% geneset@all.genes);
if (sum(gpw$peak) == 0) {
stop("Error: no peaks in your data!");
}
if (!(counts %in% names(gpw))) {
stop(sprintf("Error: %s is not a column in data!", counts))
}
fitspl = mgcv::gam(as.formula(sprintf("%s~s(log10_length,bs='cr')",counts)),data=gpw,family="nb")
gpw$spline = as.numeric(predict(fitspl, gpw, type="terms"))
# Construct model formula.
model = sprintf("%s ~ goterm + spline",counts);
# Run tests. NOTE: If os == 'Windows', n_cores is reset to 1 for this to work
results_list = parallel::mclapply(as.list(ls(geneset@set.gene)), function(go_id) {
single_polyenrich_weighted(go_id, geneset, gpw, fitspl, 'polyenrich', model)
}, mc.cores = n_cores)
# Collapse results into one table
results = Reduce(rbind,results_list)
# Correct for multiple testing
results$FDR = p.adjust(results$P.value, method="BH");
# Create enriched/depleted status column
results$Status = ifelse(results$Effect > 0, 'enriched', 'depleted')
results = results[order(results$P.value),];
return(results);
}
single_polyenrich_weighted = function(go_id, geneset, gpw, fitspl, method, model) {
final_model = as.formula(model);
# Genes in the geneset
go_genes = geneset@set.gene[[go_id]];
# Filter genes in the geneset to only those in the gpw table.
# The gpw table will be truncated depending on which geneset type we're in.
go_genes = go_genes[go_genes %in% gpw$gene_id];
# Background genes and the background presence of a peak
b_genes = gpw$gene_id %in% go_genes;
sg_go = gpw$peak[b_genes];
# Information about the geneset
r_go_id = go_id;
r_go_genes_num = length(go_genes);
r_go_genes_avg_length = mean(gpw$length[b_genes]);
# Information about peak genes
go_genes_peak = gpw$gene_id[b_genes][sg_go==1];
r_go_genes_peak = paste(go_genes_peak,collapse=", ");
r_go_genes_peak_num = length(go_genes_peak);
# Logistic regression works no matter the method because final_model is chosen above
# and the data required from gpw will automatically be correct based on the method used.
fit = gam(final_model,data=cbind(gpw,goterm=as.numeric(b_genes)),family="nb");
# Results from the logistic regression
r_effect = coef(fit)[2];
r_pval = summary(fit)$p.table[2,4];
# The only difference between chipenrich and broadenrich here is
# the Geneset Avg Gene Coverage column
out = data.frame(
"P.value"=r_pval,
"Geneset ID"=r_go_id,
"N Geneset Genes"=r_go_genes_num,
"Geneset Peak Genes"=r_go_genes_peak,
"N Geneset Peak Genes"=r_go_genes_peak_num,
"Effect"=r_effect,
"Odds.Ratio"=exp(r_effect),
"Geneset Avg Gene Length"=r_go_genes_avg_length,
stringsAsFactors=FALSE);
return(out);
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.