Nothing
test_polyapprox = function(geneset, gpw, n_cores) {
# Restrict our genes/weights/peaks to only those genes in the genesets.
# Here, geneset is not all combined, but GOBP, GOCC, etc.
# i.e. A specific one.
gpw = subset(gpw, gpw$gene_id %in% geneset@all.genes)
fitspl = mgcv::gam(num_peaks~s(log10_length,bs='cr'),data=gpw,family="nb")
gpw$spline = as.numeric(predict(fitspl, gpw, type="terms"))
#Need to use glm.nb to be able to use glm.scoretest later
nullfit = MASS::glm.nb(num_peaks~spline,data=gpw)
# Model formula not needed
#model = "num_peaks ~ goterm + spline"
# Run tests. NOTE: If os == 'Windows', n_cores is reset to 1 for this to work
results_list = parallel::mclapply(as.list(ls(geneset@set.gene)), function(go_id) {
single_polyapprox(go_id, geneset, gpw, 'polyenrich', nullmodel = nullfit)
}, mc.cores = n_cores)
# Collapse results into one table
results = Reduce(rbind,results_list)
# Correct for multiple testing
results$FDR = p.adjust(results$P.value, method="BH")
# Create enriched/depleted status column
results$Status = ifelse(results$Effect > 0, 'enriched', 'depleted')
results = results[order(results$P.value),]
return(results)
}
glm.scoretest <- function(fit, x2, dispersion=NULL) #Directly lifted from statmod package,
# because asking for more dependencies is asking for more chances for errors.
# Score test for new covariate in glm
# Gordon Smyth
# 27 March 2009. Last modified 20 Mar 2010.
{
w <- fit$weights
r <- fit$residuals
if(any(w <= 0)) {
r <- r[w>0]
x2 <- x2[w>0]
w <- w[w>0]
}
if (is.null(dispersion)) {
fixed.dispersion <- (fit$family$family %in% c("poisson","binomial"))
if(fixed.dispersion)
dispersion <- 1
else if(fit$df.residual > 0) {
dispersion <- sum(w*r^2)/fit$df.residual
} else {
stop("No residual df available to estimate dispersion")
}
}
ws <- sqrt(w)
x2.1w <- qr.resid(fit$qr,ws*x2)
zw <- ws*r
colSums(as.matrix(x2.1w*zw))/sqrt(colSums(as.matrix(x2.1w * x2.1w)))/sqrt(dispersion)
}
single_polyapprox = function(go_id, geneset, gpw, method, nullmodel) {
# Genes in the geneset
go_genes = geneset@set.gene[[go_id]]
# Background genes and the background presence of a peak
b_genes = gpw$gene_id %in% go_genes
sg_go = gpw$peak[b_genes]
# Information about the geneset
r_go_id = go_id
r_go_genes_num = length(go_genes)
r_go_genes_avg_length = mean(gpw$length[b_genes])
# Information about peak genes
go_genes_peak = gpw$gene_id[b_genes][sg_go==1]
r_go_genes_peak = paste(go_genes_peak,collapse=", ")
r_go_genes_peak_num = length(go_genes_peak)
r_effect = NA
r_pval = NA
tryCatch(
{r_effect = glm.scoretest(nullmodel, as.numeric(b_genes));
r_pval = 2*stats::pnorm(abs(r_effect),lower.tail = F)
},
error = {function(e) {warning(
sprintf("Error in geneset: %s. NAs given", go_id))
}}
)
out = data.frame(
"P.value"=r_pval,
"Geneset ID"=r_go_id,
"N Geneset Genes"=r_go_genes_num,
"Geneset Peak Genes"=r_go_genes_peak,
"N Geneset Peak Genes"=r_go_genes_peak_num,
"Effect"=r_effect,
"Odds.Ratio"=exp(r_effect),
"Geneset Avg Gene Length"=r_go_genes_avg_length,
stringsAsFactors = FALSE)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.