Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, dev = "png")
## ----install, eval= FALSE-----------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE)) {
# install.packages("BiocManager")
# }
# BiocManager::install("celda")
## ----load, eval=TRUE, message=FALSE-------------------------------------------
library(celda)
## ----load_10X, eval=TRUE, message=FALSE---------------------------------------
# Install TENxPBMCData if is it not already
if (!requireNamespace("TENxPBMCData", quietly = TRUE)) {
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("TENxPBMCData")
}
# Load PBMC data
library(TENxPBMCData)
pbmc4k <- TENxPBMCData("pbmc4k")
colnames(pbmc4k) <- paste(pbmc4k$Sample, pbmc4k$Barcode, sep = "_")
rownames(pbmc4k) <- rowData(pbmc4k)$Symbol_TENx
## ----decontX, eval=TRUE, message=FALSE----------------------------------------
pbmc4k <- decontX(x = pbmc4k)
## ----UMAP_Clusters------------------------------------------------------------
umap <- reducedDim(pbmc4k, "decontX_UMAP")
plotDimReduceCluster(x = pbmc4k$decontX_clusters,
dim1 = umap[, 1], dim2 = umap[, 2])
## -----------------------------------------------------------------------------
plotDecontXContamination(pbmc4k)
## ---- message=FALSE-----------------------------------------------------------
library(scater)
pbmc4k <- logNormCounts(pbmc4k)
plotDimReduceFeature(as.matrix(logcounts(pbmc4k)),
dim1 = umap[, 1],
dim2 = umap[, 2],
features = c("CD3D", "CD3E", "GNLY",
"LYZ", "S100A8", "S100A9",
"CD79A", "CD79B", "MS4A1"),
exactMatch = TRUE)
## ----barplotCounts------------------------------------------------------------
markers <- list(Tcell_Markers = c("CD3E", "CD3D"),
Bcell_Markers = c("CD79A", "CD79B", "MS4A1"),
Monocyte_Markers = c("S100A8", "S100A9", "LYZ"),
NKcell_Markers = "GNLY")
cellTypeMappings <- list(Tcells = 2, Bcells = 5, Monocytes = 1, NKcells = 6)
plotDecontXMarkerPercentage(pbmc4k,
markers = markers,
groupClusters = cellTypeMappings,
assayName = "counts")
## ----barplotDecontCounts------------------------------------------------------
plotDecontXMarkerPercentage(pbmc4k,
markers = markers,
groupClusters = cellTypeMappings,
assayName = "decontXcounts")
## ----barplotBoth--------------------------------------------------------------
plotDecontXMarkerPercentage(pbmc4k,
markers = markers,
groupClusters = cellTypeMappings,
assayName = c("counts", "decontXcounts"))
## ----plotDecontXMarkerExpression----------------------------------------------
plotDecontXMarkerExpression(pbmc4k,
markers = markers[["Monocyte_Markers"]],
groupClusters = cellTypeMappings,
ncol = 3)
## ----plot_norm_counts, eval = FALSE-------------------------------------------
# pbmc4k <- scater::logNormCounts(pbmc4k,
# exprs_values = "decontXcounts",
# name = "dlogcounts")
#
# plotDecontXMarkerExpression(pbmc4k,
# markers = markers[["Monocyte_Markers"]],
# groupClusters = cellTypeMappings,
# ncol = 3,
# assayName = c("logcounts", "dlogcounts"))
## ----findDelta----------------------------------------------------------------
metadata(pbmc4k)$decontX$estimates$all_cells$delta
## ----newDecontX, eval=TRUE, message=FALSE-------------------------------------
pbmc4k.delta <- decontX(pbmc4k, delta = c(9, 20), estimateDelta = FALSE)
plot(pbmc4k$decontX_contamination, pbmc4k.delta$decontX_contamination,
xlab = "DecontX estimated priors",
ylab = "Setting priors to estimate higher contamination")
abline(0, 1, col = "red", lwd = 2)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.