Nothing
#' @title Mapping the dimension reduction plot
#' @description Creates a scatterplot given two dimensions from a data
#' dimension reduction tool (e.g tSNE) output.
#' @param x Numeric matrix or a \linkS4class{SingleCellExperiment} object
#' with the matrix located in the assay slot under \code{useAssay}. Each
#' row of the matrix will be plotted as a separate facet.
#' @param reducedDimName The name of the dimension reduction slot in
#' \code{reducedDimNames(x)} if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Ignored if both \code{dim1} and
#' \code{dim2} are set.
#' @param dim1 Numeric vector. First dimension from data dimension
#' reduction output.
#' @param dim2 Numeric vector. Second dimension from data dimension
#' reduction output.
#' @param useAssay A string specifying which \link{assay}
#' slot to use if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param size Numeric. Sets size of point on plot. Default 1.
#' @param xlab Character vector. Label for the x-axis. Default 'Dimension_1'.
#' @param ylab Character vector. Label for the y-axis. Default 'Dimension_2'.
#' @param limits Passed to \link{scale_colour_gradient2}. The range
#' of color scale.
#' @param colorLow Character. A color available from `colors()`.
#' The color will be used to signify the lowest values on the scale.
#' Default "blue4".
#' @param colorMid Character. A color available from `colors()`.
#' The color will be used to signify the midpoint on the scale. Default
#' "grey90".
#' @param colorHigh Character. A color available from `colors()`.
#' The color will be used to signify the highest values on the scale.
#' Default "firebrick1".
#' @param midpoint Numeric. The value indicating the midpoint of the
#' diverging color scheme. If \code{NULL}, defaults to the mean
#' with 10 percent of values trimmed. Default \code{0}.
#' @param varLabel Character vector. Title for the color legend.
#' @param ncol Integer. Passed to \link[ggplot2]{facet_wrap}. Specify the
#' number of columns for facet wrap.
#' @param headers Character vector. If `NULL`, the corresponding rownames are
#' used as labels. Otherwise, these headers are used to label the genes.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @param decreasing logical. Specifies the order of plotting the points.
#' If \code{FALSE}, the points will be plotted in increasing order where
#' the points with largest values will be on top. \code{TRUE} otherwise.
#' If \code{NULL}, no sorting is performed. Points will be plotted in their
#' current order in \code{x}. Default \code{FALSE}.
#' @return The plot as a ggplot object
#' @export
setGeneric("plotDimReduceGrid", function(x, ...) {
standardGeneric("plotDimReduceGrid")})
#' @rdname plotDimReduceGrid
#' @examples
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceGrid(x = sce,
#' reducedDimName = "celda_tSNE",
#' xlab = "Dimension1",
#' ylab = "Dimension2",
#' varLabel = "tSNE")
#' @export
setMethod("plotDimReduceGrid",
signature(x = "SingleCellExperiment"),
function(x,
reducedDimName,
dim1 = NULL,
dim2 = NULL,
useAssay = "counts",
altExpName = "featureSubset",
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
limits = c(-2, 2),
colorLow = "blue4",
colorMid = "grey90",
colorHigh = "firebrick1",
midpoint = 0,
varLabel = NULL,
ncol = NULL,
headers = NULL,
decreasing = FALSE) {
altExp <- SingleCellExperiment::altExp(x, altExpName)
matrix <- SummarizedExperiment::assay(x, i = useAssay)
if (is.null(dim1)) {
dim1 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 1]
}
if (is.null(dim2)) {
dim2 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 2]
}
g <- .plotDimReduceGrid(dim1 = dim1,
dim2 = dim2,
matrix = matrix,
size = size,
xlab = xlab,
ylab = ylab,
limits = limits,
colorLow = colorLow,
colorMid = colorMid,
colorHigh = colorHigh,
midpoint = midpoint,
varLabel = varLabel,
ncol = ncol,
headers = headers,
decreasing = decreasing)
return(g)
}
)
#' @rdname plotDimReduceGrid
#' @examples
#' library(SingleCellExperiment)
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceGrid(x = counts(sce),
#' dim1 = reducedDim(altExp(sce), "celda_tSNE")[, 1],
#' dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
#' xlab = "Dimension1",
#' ylab = "Dimension2",
#' varLabel = "tSNE")
#' @export
setMethod("plotDimReduceGrid",
signature(x = "matrix"),
function(x,
dim1,
dim2,
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
limits = c(-2, 2),
colorLow = "blue4",
colorMid = "grey90",
colorHigh = "firebrick1",
midpoint = NULL,
varLabel = NULL,
ncol = NULL,
headers = NULL,
decreasing = FALSE) {
g <- .plotDimReduceGrid(dim1 = dim1,
dim2 = dim2,
matrix = x,
size = size,
xlab = xlab,
ylab = ylab,
limits = limits,
colorLow = colorLow,
colorMid = colorMid,
colorHigh = colorHigh,
midpoint = midpoint,
varLabel = varLabel,
ncol = ncol,
headers = headers,
decreasing = decreasing)
return(g)
}
)
#' @importFrom reshape2 melt
.plotDimReduceGrid <- function(dim1,
dim2,
matrix,
size,
xlab,
ylab,
limits,
colorLow,
colorMid,
colorHigh,
midpoint,
varLabel,
ncol,
headers,
decreasing) {
df <- data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
naIx <- is.na(dim1) | is.na(dim2)
df <- df[!naIx, ]
m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
colnames(m) <- c(xlab, ylab, "facet", "Expression")
if (!is.null(decreasing)) {
m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
}
if (is.null(midpoint)) {
midpoint <- mean(m[, 4], trim = 0.1)
}
varLabel <- gsub("_", " ", varLabel)
if (isFALSE(is.null(headers))) {
names(headers) <- levels(m$facet)
headers <- ggplot2::as_labeller(headers)
g <- ggplot2::ggplot(
m,
ggplot2::aes_string(x = xlab, y = ylab)
) +
ggplot2::geom_point(
stat = "identity",
size = size,
ggplot2::aes_string(color = m$Expression)
) +
ggplot2::theme_bw() +
ggplot2::scale_colour_gradient2(
limits = limits,
low = colorLow,
high = colorHigh,
mid = colorMid,
midpoint = midpoint,
name = varLabel
) +
ggplot2::theme(
strip.background = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.spacing = unit(0, "lines"),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black")
)
if (isFALSE(is.null(ncol))) {
g <- g + ggplot2::facet_wrap(~facet,
labeller = headers,
ncol = ncol
)
} else {
g <- g + ggplot2::facet_wrap(~facet, labeller = headers)
}
} else {
g <- ggplot2::ggplot(
m,
ggplot2::aes_string(x = xlab, y = ylab)
) +
ggplot2::geom_point(
stat = "identity",
size = size,
ggplot2::aes_string(color = m$Expression)
) +
ggplot2::facet_wrap(~facet) +
ggplot2::theme_bw() +
ggplot2::scale_colour_gradient2(
limits = limits,
low = colorLow,
high = colorHigh,
mid = colorMid,
midpoint = midpoint,
name = varLabel
) +
ggplot2::theme(
strip.background = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.spacing = unit(0, "lines"),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black")
)
if (isFALSE(is.null(ncol))) {
g <- g + ggplot2::facet_wrap(~facet, ncol = ncol)
} else {
g <- g + ggplot2::facet_wrap(~facet)
}
}
return(g)
}
#' @title Plotting feature expression on a dimension reduction plot
#' @description Create a scatterplot for each row of a normalized gene
#' expression matrix where x and y axis are from a data dimension
#' reduction tool. The cells are colored by expression of
#' the specified feature.
#' @param x Numeric matrix or a \linkS4class{SingleCellExperiment} object
#' with the matrix located in the assay slot under \code{useAssay}. Rows
#' represent features and columns represent cells.
#' @param reducedDimName The name of the dimension reduction slot in
#' \code{reducedDimNames(x)} if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Ignored if both \code{dim1} and
#' \code{dim2} are set.
#' @param dim1 Numeric vector. First dimension from data
#' dimension reduction output.
#' @param dim2 Numeric vector. Second dimension from data dimension
#' reduction output.
#' @param useAssay A string specifying which \link{assay}
#' slot to use if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param features Character vector. Features in the rownames of counts to plot.
#' @param headers Character vector. If `NULL`, the corresponding rownames are
#' used as labels. Otherwise, these headers are used to label the features.
#' @param normalize Logical. Whether to normalize the columns of `counts`.
#' Default \code{FALSE}.
#' @param zscore Logical. Whether to scale each feature to have a mean 0
#' and standard deviation of 1. Default \code{TRUE}.
#' @param exactMatch Logical. Whether an exact match or a partial match using
#' \code{grep()} is used to look up the feature in the rownames of the counts
#' matrix. Default TRUE.
#' @param trim Numeric vector. Vector of length two that specifies the lower
#' and upper bounds for the data. This threshold is applied after row scaling.
#' Set to NULL to disable. Default \code{c(-1,1)}.
#' @param limits Passed to \link{scale_colour_gradient2}. The range
#' of color scale.
#' @param size Numeric. Sets size of point on plot. Default 1.
#' @param xlab Character vector. Label for the x-axis. Default "Dimension_1".
#' @param ylab Character vector. Label for the y-axis. Default "Dimension_2".
#' @param colorLow Character. A color available from `colors()`. The color
#' will be used to signify the lowest values on the scale.
#' @param colorMid Character. A color available from `colors()`. The color
#' will be used to signify the midpoint on the scale.
#' @param colorHigh Character. A color available from `colors()`. The color
#' will be used to signify the highest values on the scale.
#' @param midpoint Numeric. The value indicating the midpoint of the
#' diverging color scheme. If \code{NULL}, defaults to the mean
#' with 10 percent of values trimmed. Default \code{0}.
#' @param ncol Integer. Passed to \link[ggplot2]{facet_wrap}. Specify the
#' number of columns for facet wrap.
#' @param decreasing logical. Specifies the order of plotting the points.
#' If \code{FALSE}, the points will be plotted in increasing order where
#' the points with largest values will be on top. \code{TRUE} otherwise.
#' If \code{NULL}, no sorting is performed. Points will be plotted in their
#' current order in \code{x}. Default \code{FALSE}.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return The plot as a ggplot object
#' @export
setGeneric("plotDimReduceFeature", function(x, ...) {
standardGeneric("plotDimReduceFeature")})
#' @rdname plotDimReduceFeature
#' @examples
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceFeature(x = sce,
#' reducedDimName = "celda_tSNE",
#' normalize = TRUE,
#' features = c("Gene_99"),
#' exactMatch = TRUE)
#' @export
setMethod("plotDimReduceFeature",
signature(x = "SingleCellExperiment"),
function(x,
reducedDimName,
dim1 = NULL,
dim2 = NULL,
useAssay = "counts",
altExpName = "featureSubset",
features,
headers = NULL,
normalize = FALSE,
zscore = TRUE,
exactMatch = TRUE,
trim = c(-2, 2),
limits = c(-2, 2),
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
colorLow = "blue4",
colorMid = "grey90",
colorHigh = "firebrick1",
midpoint = 0,
ncol = NULL,
decreasing = FALSE) {
altExp <- SingleCellExperiment::altExp(x, altExpName)
counts <- SummarizedExperiment::assay(x, i = useAssay)
if (is.null(dim1)) {
dim1 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 1]
}
if (is.null(dim2)) {
dim2 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 2]
}
g <- .plotDimReduceFeature(dim1 = dim1,
dim2 = dim2,
counts = counts,
features = features,
headers = headers,
normalize = normalize,
zscore = zscore,
exactMatch = exactMatch,
trim = trim,
limits = limits,
size = size,
xlab = xlab,
ylab = ylab,
colorLow = colorLow,
colorMid = colorMid,
colorHigh = colorHigh,
midpoint = midpoint,
ncol = ncol,
decreasing = decreasing)
return(g)
}
)
#' @rdname plotDimReduceFeature
#' @examples
#' library(SingleCellExperiment)
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceFeature(x = counts(sce),
#' dim1 = reducedDim(altExp(sce), "celda_tSNE")[, 1],
#' dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
#' normalize = TRUE,
#' features = c("Gene_99"),
#' exactMatch = TRUE)
#' @export
setMethod("plotDimReduceFeature",
signature(x = "matrix"),
function(x,
dim1,
dim2,
features,
headers = NULL,
normalize = FALSE,
zscore = TRUE,
exactMatch = TRUE,
trim = c(-2, 2),
limits = c(-2, 2),
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
colorLow = "blue4",
colorMid = "grey90",
colorHigh = "firebrick1",
midpoint = 0,
ncol = NULL,
decreasing = FALSE) {
g <- .plotDimReduceFeature(dim1 = dim1,
dim2 = dim2,
counts = x,
features = features,
headers = headers,
normalize = normalize,
zscore = zscore,
exactMatch = exactMatch,
trim = trim,
limits = limits,
size = size,
xlab = xlab,
ylab = ylab,
colorLow = colorLow,
colorMid = colorMid,
colorHigh = colorHigh,
midpoint = midpoint,
ncol = ncol,
decreasing = decreasing)
return(g)
}
)
.plotDimReduceFeature <- function(dim1,
dim2,
counts,
features,
headers,
normalize,
zscore,
exactMatch,
trim,
limits,
size,
xlab,
ylab,
colorLow,
colorMid,
colorHigh,
midpoint,
ncol,
decreasing) {
# Perform checks
if (is.null(features)) {
stop("at least one feature is required to create a plot")
}
if (isFALSE(is.null(headers))) {
if (length(headers) != length(features)) {
stop(
"Headers ",
headers,
" should be the same length as features ",
features
)
}
if (isFALSE(exactMatch)) {
warning("exactMatch is FALSE. headers will not be used!")
headers <- NULL
}
}
## Normalize data if needed
if (isTRUE(normalize)) {
counts <- normalizeCounts(counts, transformationFun = sqrt)
}
# After normalization, features can be selected
featuresIx <- retrieveFeatureIndex(features,
counts,
by = "rownames",
exactMatch = exactMatch)
counts <- as.matrix(counts[featuresIx, , drop = FALSE])
# Scale/zscore data if needed
varLabel <- "Expression"
if (isTRUE(zscore)) {
counts <- t(scale(t(counts)))
varLabel <- "Scaled\nExpression"
}
if (!is.null(trim)) {
if (length(trim) != 2) {
stop(
"'trim' should be a 2 element vector",
"specifying the lower and upper boundaries"
)
}
trim <- sort(trim)
counts[counts < trim[1]] <- trim[1]
counts[counts > trim[2]] <- trim[2]
}
.plotDimReduceGrid(
dim1 = dim1,
dim2 = dim2,
matrix = counts,
size = size,
xlab = xlab,
ylab = ylab,
limits = limits,
colorLow = colorLow,
colorMid = colorMid,
colorHigh = colorHigh,
varLabel = varLabel,
midpoint = midpoint,
ncol = ncol,
headers = headers,
decreasing = decreasing
)
}
#' @title Plotting Celda module probability on a
#' dimension reduction plot
#' @description Create a scatterplot for each row of a normalized
#' gene expression matrix where x and y axis are from a data
#' dimension reduction tool.
#' The cells are colored by the module probability.
#' @param x Numeric matrix or a \linkS4class{SingleCellExperiment} object
#' with the matrix located in the assay slot under \code{useAssay}. Rows
#' represent features and columns represent cells.
#' @param reducedDimName The name of the dimension reduction slot in
#' \code{reducedDimNames(x)} if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Ignored if both \code{dim1} and
#' \code{dim2} are set.
#' @param dim1 Numeric vector.
#' First dimension from data dimension reduction output.
#' @param dim2 Numeric vector.
#' Second dimension from data dimension reduction output.
#' @param useAssay A string specifying which \link{assay}
#' slot to use if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param celdaMod Celda object of class "celda_G" or "celda_CG". Used only if
#' \code{x} is a matrix object.
#' @param modules Character vector. Module(s) from celda model to be plotted.
#' e.g. c("1", "2").
#' @param rescale Logical.
#' Whether rows of the matrix should be rescaled to [0, 1]. Default TRUE.
#' @param limits Passed to \link{scale_colour_gradient}. The range
#' of color scale.
#' @param size Numeric. Sets size of point on plot. Default 1.
#' @param xlab Character vector. Label for the x-axis. Default "Dimension_1".
#' @param ylab Character vector. Label for the y-axis. Default "Dimension_2".
#' @param colorLow Character. A color available from `colors()`.
#' The color will be used to signify the lowest values on the scale.
#' @param colorHigh Character. A color available from `colors()`.
#' The color will be used to signify the highest values on the scale.
#' @param ncol Integer. Passed to \link[ggplot2]{facet_wrap}. Specify the
#' number of columns for facet wrap.
#' @param decreasing logical. Specifies the order of plotting the points.
#' If \code{FALSE}, the points will be plotted in increasing order where
#' the points with largest values will be on top. \code{TRUE} otherwise.
#' If \code{NULL}, no sorting is performed. Points will be plotted in their
#' current order in \code{x}. Default \code{FALSE}.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return The plot as a ggplot object
#' @export
setGeneric("plotDimReduceModule", function(x, ...) {
standardGeneric("plotDimReduceModule")})
#' @rdname plotDimReduceModule
#' @examples
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceModule(x = sce,
#' reducedDimName = "celda_tSNE",
#' modules = c("1", "2"))
#' @export
setMethod("plotDimReduceModule",
signature(x = "SingleCellExperiment"),
function(x,
reducedDimName,
dim1 = NULL,
dim2 = NULL,
useAssay = "counts",
altExpName = "featureSubset",
modules = NULL,
rescale = TRUE,
limits = c(0, 1),
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
colorLow = "grey90",
colorHigh = "firebrick1",
ncol = NULL,
decreasing = FALSE) {
altExp <- SingleCellExperiment::altExp(x, altExpName)
if (is.null(dim1)) {
dim1 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 1]
}
if (is.null(dim2)) {
dim2 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 2]
}
counts <- SummarizedExperiment::assay(x, i = useAssay)
factorized <- factorizeMatrix(x,
useAssay = useAssay,
altExpName = altExpName,
type = "proportion")
g <- .plotDimReduceModule(dim1 = dim1,
dim2 = dim2,
counts = counts,
factorized = factorized,
modules = modules,
rescale = rescale,
limits = limits,
size = size,
xlab = xlab,
ylab = ylab,
colorLow = colorLow,
colorHigh = colorHigh,
ncol = ncol,
decreasing = decreasing)
return(g)
}
)
#' @rdname plotDimReduceModule
#' @examples
#' library(SingleCellExperiment)
#' data(sceCeldaCG, celdaCGMod)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceModule(x = counts(sce),
#' dim1 = reducedDim(altExp(sce), "celda_tSNE")[, 1],
#' dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
#' celdaMod = celdaCGMod,
#' modules = c("1", "2"))
#' @export
setMethod("plotDimReduceModule",
signature(x = "matrix"),
function(x,
dim1,
dim2,
celdaMod,
modules = NULL,
rescale = TRUE,
limits = c(0, 1),
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
colorLow = "blue4",
colorHigh = "firebrick1",
ncol = NULL,
decreasing = FALSE) {
factorized <- factorizeMatrix(x = x, celdaMod = celdaMod)
g <- .plotDimReduceModule(dim1 = dim1,
dim2 = dim2,
counts = x,
factorized = factorized,
modules = modules,
rescale = rescale,
limits = limits,
size = size,
xlab = xlab,
ylab = ylab,
colorLow = colorLow,
colorHigh = colorHigh,
ncol = ncol,
decreasing = decreasing)
return(g)
}
)
.plotDimReduceModule <- function(dim1,
dim2,
counts,
factorized,
modules,
rescale,
limits,
size,
xlab,
ylab,
colorLow,
colorHigh,
ncol,
decreasing) {
matrix <- factorized$proportions$cell
if (rescale == TRUE) {
for (x in seq(nrow(matrix))) {
matrix[x, ] <- matrix[x, ] - min(matrix[x, ])
matrix[x, ] <- matrix[x, ] / max(matrix[x, ])
varLabel <- "Scaled Probability"
}
} else {
varLabel <- "Probability"
}
rownames(matrix) <- gsub("L", "", rownames(matrix))
if (!is.null(modules)) {
if (length(rownames(matrix)[rownames(matrix) %in% modules]) < 1) {
stop("All modules selected do not exist in the model.")
}
matrix <- matrix[which(rownames(matrix) %in% modules), , drop = FALSE]
matrix <- matrix[match(rownames(matrix), modules), , drop = FALSE]
}
rownames(matrix) <- paste0("L", rownames(matrix))
df <- data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
naIx <- is.na(dim1) | is.na(dim2)
df <- df[!naIx, ]
m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
colnames(m) <- c(xlab, ylab, "facet", "Expression")
if (!is.null(decreasing)) {
m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
}
g <- ggplot2::ggplot(m, ggplot2::aes_string(x = xlab, y = ylab)) +
ggplot2::geom_point(stat = "identity",
size = size,
ggplot2::aes_string(color = m$Expression)) +
ggplot2::facet_wrap(~facet) +
ggplot2::theme_bw() +
ggplot2::scale_colour_gradient(limits = limits,
low = colorLow,
high = colorHigh,
name = varLabel) +
ggplot2::theme(strip.background = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.spacing = unit(0, "lines"),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black"))
if (isFALSE(is.null(ncol))) {
g <- g + ggplot2::facet_wrap(~facet, ncol = ncol)
} else {
g <- g + ggplot2::facet_wrap(~facet)
}
return(g)
}
# Labeling code adapted from Seurat (https://github.com/satijalab/seurat)
#' @title Plotting the cell labels on a dimension reduction plot
#' @description Create a scatterplot for each row of a normalized
#' gene expression matrix where x and y axis are from a
#' data dimension reduction tool.
#' The cells are colored by "celda_cell_cluster" column in
#' \code{colData(altExp(x, altExpName))} if \code{x} is a
#' \linkS4class{SingleCellExperiment} object, or \code{x} if \code{x} is
#' a integer vector of cell cluster labels.
#' @param x Integer vector of cell cluster labels or a
#' \linkS4class{SingleCellExperiment} object
#' containing cluster labels for each cell in \code{"celda_cell_cluster"}
#' column in \code{colData(x)}.
#' @param reducedDimName The name of the dimension reduction slot in
#' \code{reducedDimNames(x)} if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Ignored if both \code{dim1} and
#' \code{dim2} are set.
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param dim1 Numeric vector. First dimension from data
#' dimension reduction output.
#' @param dim2 Numeric vector. Second dimension from data
#' dimension reduction output.
#' @param size Numeric. Sets size of point on plot. Default 1.
#' @param xlab Character vector. Label for the x-axis. Default "Dimension_1".
#' @param ylab Character vector. Label for the y-axis. Default "Dimension_2".
#' @param specificClusters Numeric vector.
#' Only color cells in the specified clusters.
#' All other cells will be grey.
#' If NULL, all clusters will be colored. Default \code{NULL}.
#' @param labelClusters Logical. Whether the cluster labels are plotted.
#' Default FALSE.
#' @param groupBy Character vector. Contains sample labels for each cell.
#' If NULL, all samples will be plotted together. Default NULL.
#' @param labelSize Numeric. Sets size of label if labelClusters is TRUE.
#' Default 3.5.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return The plot as a ggplot object
#' @importFrom ggrepel geom_text_repel
#' @export
setGeneric("plotDimReduceCluster", function(x, ...) {
standardGeneric("plotDimReduceCluster")})
#' @rdname plotDimReduceCluster
#' @examples
#' data(sceCeldaCG)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceCluster(x = sce,
#' reducedDimName = "celda_tSNE",
#' specificClusters = c(1, 2, 3))
#' @export
setMethod("plotDimReduceCluster",
signature(x = "SingleCellExperiment"),
function(x,
reducedDimName,
altExpName = "featureSubset",
dim1 = NULL,
dim2 = NULL,
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
specificClusters = NULL,
labelClusters = FALSE,
groupBy = NULL,
labelSize = 3.5) {
altExp <- SingleCellExperiment::altExp(x, altExpName)
if (!("celda_cell_cluster" %in%
colnames(SummarizedExperiment::colData(altExp)))) {
stop("Must have column 'celda_cell_cluster' in",
" colData(altExp(x, altExpName))!")
}
cluster <- SummarizedExperiment::colData(altExp)[["celda_cell_cluster"]]
if (is.null(dim1)) {
dim1 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 1]
}
if (is.null(dim2)) {
dim2 <- SingleCellExperiment::reducedDim(altExp,
reducedDimName)[, 2]
}
g <- .plotDimReduceCluster(dim1 = dim1,
dim2 = dim2,
cluster = cluster,
size = size,
xlab = xlab,
ylab = ylab,
specificClusters = specificClusters,
labelClusters = labelClusters,
groupBy = groupBy,
labelSize = labelSize)
return(g)
}
)
#' @rdname plotDimReduceCluster
#' @examples
#' library(SingleCellExperiment)
#' data(sceCeldaCG, celdaCGMod)
#' sce <- celdaTsne(sceCeldaCG)
#' plotDimReduceCluster(x = celdaClusters(celdaCGMod)$z,
#' dim1 = reducedDim(altExp(sce), "celda_tSNE")[, 1],
#' dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
#' specificClusters = c(1, 2, 3))
#' @export
setMethod("plotDimReduceCluster",
signature(x = "vector"),
function(x,
dim1,
dim2,
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
specificClusters = NULL,
labelClusters = FALSE,
groupBy = NULL,
labelSize = 3.5) {
g <- .plotDimReduceCluster(dim1 = dim1,
dim2 = dim2,
cluster = x,
size = size,
xlab = xlab,
ylab = ylab,
specificClusters = specificClusters,
labelClusters = labelClusters,
groupBy = groupBy,
labelSize = labelSize)
return(g)
}
)
.plotDimReduceCluster <- function(dim1,
dim2,
cluster,
size,
xlab,
ylab,
specificClusters,
labelClusters,
groupBy,
labelSize) {
if (!is.null(groupBy)) {
df <- data.frame(dim1, dim2, cluster, groupBy)
colnames(df) <- c(xlab, ylab, "Cluster", "Sample")
} else {
df <- data.frame(dim1, dim2, cluster)
colnames(df) <- c(xlab, ylab, "Cluster")
}
naIx <- is.na(dim1) | is.na(dim2)
df <- df[!naIx, ]
df[3] <- as.factor(df[[3]])
clusterColors <- distinctColors(nlevels(as.factor(cluster)))
if (!is.null(specificClusters)) {
clusterColors[!levels(df[[3]]) %in% specificClusters] <- "gray92"
}
g <- ggplot2::ggplot(df, ggplot2::aes_string(x = xlab, y = ylab)) +
ggplot2::geom_point(
stat = "identity",
size = size,
ggplot2::aes_string(color = "Cluster")
) +
ggplot2::theme(
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(color = "black")
) +
ggplot2::scale_color_manual(values = clusterColors) +
ggplot2::guides(
color =
ggplot2::guide_legend(override.aes = list(size = 1))
)
if (isTRUE(labelClusters)) {
# centroidList <- lapply(seq(length(unique(cluster))), function(x) {
centroidList <- lapply(unique(cluster), function(x) {
df.sub <- df[df$Cluster == x, ]
median1 <- stats::median(df.sub[, xlab])
median2 <- stats::median(df.sub[, ylab])
data.frame(median1 = median1, median2 = median2, x = x)
})
centroid <- do.call(rbind, centroidList)
centroid <- data.frame(
Dimension_1 = as.numeric(centroid[, 1]),
Dimension_2 = as.numeric(centroid[, 2]),
Cluster = centroid[, 3]
)
colnames(centroid)[seq(2)] <- c(xlab, ylab)
g <- g + ggplot2::geom_point(
data = centroid,
mapping = ggplot2::aes_string(
x = xlab,
y = ylab
),
size = 0,
alpha = 0
) +
ggrepel::geom_text_repel(
data = centroid,
mapping = ggplot2::aes_string(label = "Cluster"),
size = labelSize
)
}
if (!is.null(x = groupBy)) {
g <- g + ggplot2::facet_wrap(
facets = ggplot2::vars(!!ggplot2::sym(x = "Sample"))) +
ggplot2::theme(strip.background = ggplot2::element_blank())
}
return(g)
}
#' @title Feature Expression Violin Plot
#' @description Outputs a violin plot for feature expression data.
#' @param x Numeric matrix or a \linkS4class{SingleCellExperiment} object
#' with the matrix located in the assay slot under \code{useAssay}. Rows
#' represent features and columns represent cells.
#' @param features Character vector. Uses these genes for plotting.
#' @param useAssay A string specifying which \link{assay}
#' slot to use if \code{x} is a
#' \linkS4class{SingleCellExperiment} object. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param celdaMod Celda object of class "celda_G" or "celda_CG". Used only if
#' \code{x} is a matrix object.
#' @param exactMatch Logical. Whether an exact match or a partial match using
#' \code{grep()} is used to look up the feature in the rownames of the counts
#' matrix. Default \code{TRUE}.
#' @param plotDots Boolean. If \code{TRUE}, the
#' expression of features will be plotted as points in addition to the violin
#' curve. Default \code{TRUE}.
#' @param dotSize Numeric. Size of points if \code{plotDots = TRUE}.
#' Default \code{0.1}.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return Violin plot for each feature, grouped by celda cluster
#' @export
setGeneric("plotCeldaViolin", function(x, ...) {
standardGeneric("plotCeldaViolin")})
#' @rdname plotCeldaViolin
#' @examples
#' data(sceCeldaCG)
#' plotCeldaViolin(x = sceCeldaCG, features = "Gene_1")
#' @export
setMethod("plotCeldaViolin",
signature(x = "SingleCellExperiment"),
function(x,
features,
useAssay = "counts",
altExpName = "featureSubset",
exactMatch = TRUE,
plotDots = TRUE,
dotSize = 0.1) {
counts <- SummarizedExperiment::assay(x, i = useAssay)
cluster <- celdaClusters(x, altExpName = altExpName)
g <- .plotCeldaViolin(counts = counts,
cluster = cluster,
features = features,
exactMatch = exactMatch,
plotDots = plotDots,
dotSize = dotSize)
return(g)
}
)
#' @rdname plotCeldaViolin
#' @examples
#' data(celdaCGSim, celdaCGMod)
#' plotCeldaViolin(x = celdaCGSim$counts,
#' celdaMod = celdaCGMod,
#' features = "Gene_1")
#' @export
setMethod("plotCeldaViolin",
signature(x = "matrix"),
function(x,
celdaMod,
features,
exactMatch = TRUE,
plotDots = TRUE,
dotSize = 0.1) {
cluster <- celdaClusters(celdaMod)$z
g <- .plotCeldaViolin(counts = x,
cluster = cluster,
features = features,
exactMatch = exactMatch,
plotDots = plotDots,
dotSize = dotSize)
return(g)
}
)
.plotCeldaViolin <- function(counts,
cluster,
features,
exactMatch = TRUE,
plotDots = TRUE,
dotSize = 0.1) {
featuresIx <- retrieveFeatureIndex(features,
counts,
by = "rownames",
exactMatch = exactMatch)
dataFeature <- as.matrix(counts[featuresIx, , drop = FALSE])
dataFeature <- as.data.frame(t(dataFeature))
df <- cbind(cluster, dataFeature)
df$cluster <- as.factor(df$cluster)
m <- reshape2::melt(df, id.vars = c("cluster"))
colnames(m) <- c("Cluster", "Feature", "Expression")
colorPal <- distinctColors(length(unique(cluster)))
p <- ggplot2::ggplot(
m,
ggplot2::aes_string(
x = "Cluster",
y = "Expression",
fill = "Cluster"
)
) +
ggplot2::facet_wrap(~Feature) +
ggplot2::geom_violin(trim = TRUE, scale = "width") +
ggplot2::scale_fill_manual(values = colorPal) +
ggplot2::theme(
strip.background = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.spacing = grid::unit(0, "lines"),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black")
)
if (isTRUE(plotDots)) {
p <- p + ggplot2::geom_jitter(height = 0, size = dotSize)
}
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.