suggestThreshold: Automatically suggest suitable threshold for marginal...

Description Usage Arguments Value Author(s) References Examples

View source: R/betaMixture.R

Description

The algorithm fits a mixture of a beta(1,beta) and beta(alpha,1) distribution to observed marginal regulator activities. Based on this mixture a cutoff is chosen such that the expected false positive rate is below a defined threshold.

Usage

1
suggestThreshold(prob, fpr=0.001)

Arguments

prob

marginal probability obtained from birteRun

fpr

threshold for accepted false positive rate

Value

a cutoff for marginal activity probabilities

Author(s)

Holger Froehlich

References

Froehlich, H. and Klau, G. (2013). Reconstructing Consensus Bayesian Network Structures with Application to Learning Molecular Interaction Networks. In: Beissbarth, T., Kollmar, M., Leha, A., Morgenstern, B., Schultz, A.-K., Waack, S., and Wingender, E., editors, Proc. German Conference on Bioinformatics, Open Access Series in Informatics, pages 46 - 55. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl Publishing, Germany.

Examples

1
2
freq = 0.2*rbeta(100, 1, 10) + 0.8*rbeta(100, 5, 1)
thresh = suggestThreshold(freq)

birte documentation built on May 2, 2019, 12:32 a.m.