Nothing
## ----knitr, echo=FALSE, results="hide"----------------------------------------
library("knitr")
opts_chunk$set(tidy=FALSE,dev="png",fig.show="as.is",
fig.width=10,fig.height=6,
message=FALSE,eval=T,warning=FALSE)
## ----style, eval=TRUE, echo=F, results="asis"------------------------------
BiocStyle::latex()
## ----include=FALSE---------------------------------------------------------
library(knitr)
opts_chunk$set(
concordance=TRUE
)
## ----installExampleData,eval=FALSE-----------------------------------------
# install.packages("BiocManager")
# BiocManager::install(c("beadarrayExampleData", "illuminaHumanv3.db"))
## ----prelim----------------------------------------------------------------
library("beadarray")
require(beadarrayExampleData)
data(exampleSummaryData)
exampleSummaryData
## ----objectPeek------------------------------------------------------------
exprs(exampleSummaryData)[1:5,1:5]
se.exprs(exampleSummaryData)[1:5,1:5]
## ----annotations-----------------------------------------------------------
head(fData(exampleSummaryData))
table(fData(exampleSummaryData)[,"Status"])
pData(exampleSummaryData)
## ----subsetting1-----------------------------------------------------------
channelNames(exampleSummaryData)
exampleSummaryData.log2 <- channel(exampleSummaryData, "G")
exampleSummaryData.unlogged <- channel(exampleSummaryData, "G.ul")
sampleNames(exampleSummaryData.log2)
sampleNames(exampleSummaryData.unlogged)
exprs(exampleSummaryData.log2)[1:10,1:3]
exprs(exampleSummaryData.unlogged)[1:10,1:3]
## ----subsetting2-----------------------------------------------------------
exampleSummaryData.log2[,1:4]
exampleSummaryData.log2[1:10,]
## ----subsetting4-----------------------------------------------------------
randIDs <- sample(featureNames(exampleSummaryData), 1000)
exampleSummaryData[randIDs,]
## ----boxplot1--------------------------------------------------------------
boxplot(exampleSummaryData.log2[randIDs,])
## ----boxplot2--------------------------------------------------------------
boxplot(exampleSummaryData.log2[randIDs,], what="nObservations")
## ----boxplot4--------------------------------------------------------------
boxplot(exampleSummaryData.log2[randIDs,], SampleGroup="SampleFac")
## ----boxplot5--------------------------------------------------------------
boxplot(exampleSummaryData.log2[randIDs,], probeFactor = "Status")
## ----addFdata--------------------------------------------------------------
annotation(exampleSummaryData)
exampleSummaryData.log2 <- addFeatureData(exampleSummaryData.log2,
toAdd = c("SYMBOL", "PROBEQUALITY", "CODINGZONE", "PROBESEQUENCE", "GENOMICLOCATION"))
head(fData(exampleSummaryData.log2))
illuminaHumanv3()
## ----boxplot6--------------------------------------------------------------
ids <- which(fData(exampleSummaryData.log2)[,"SYMBOL"] == "ALB")
boxplot(exampleSummaryData.log2[ids,],
SampleGroup = "SampleFac", probeFactor = "IlluminaID")
## ----ggplot-layout,fig.height=8,fig.width=8--------------------------------
library(ggplot2)
library(gridExtra)
bp1 <- boxplot(exampleSummaryData.log2[ids,],
SampleGroup = "SampleFac", probeFactor = "IlluminaID")
bp1 <- bp1+ labs(title = "ALB expression level comparison") + xlab("Illumina Probe") + ylab("Log2 Intensity")
bp2 <- boxplot(exampleSummaryData.log2[randIDs,], probeFactor = "Status")
bp2 <- bp2 + labs(title = "Control Probe Comparison")
grid.arrange(bp1,bp2)
## --------------------------------------------------------------------------
bp1$data
## ----MAs-------------------------------------------------------------------
mas <- plotMA(exampleSummaryData.log2,do.log=FALSE)
mas
## --------------------------------------------------------------------------
##Added lines on the y axis
mas + geom_hline(yintercept=c(-1.5,1.5),col="red",lty=2)
##Added a smoothed line to each plot
mas+ geom_smooth(col="red")
##Changing the color scale
mas + scale_fill_gradient2(low="yellow",mid="orange",high="red")
## --------------------------------------------------------------------------
mas <- plotMA(exampleSummaryData.log2,do.log=FALSE,SampleGroup="SampleFac")
mas[[1]]
## ----normalise1------------------------------------------------------------
exampleSummaryData.norm <- normaliseIllumina(exampleSummaryData.log2,
method="quantile", transform="none")
## ----normalise2------------------------------------------------------------
exampleSummaryData.norm2 <- normaliseIllumina(channel(exampleSummaryData, "G.ul"),
method="neqc", transform="none")
## ----filter----------------------------------------------------------------
library(illuminaHumanv3.db)
ids <- as.character(featureNames(exampleSummaryData.norm))
qual <- unlist(mget(ids, illuminaHumanv3PROBEQUALITY, ifnotfound=NA))
table(qual)
rem <- qual == "No match" | qual == "Bad" | is.na(qual)
exampleSummaryData.filt <- exampleSummaryData.norm[!rem,]
dim(exampleSummaryData.filt)
## ----deanalysis,eval=FALSE-------------------------------------------------
#
# rna <- factor(pData(exampleSummaryData)[,"SampleFac"])
#
# design <- model.matrix(~0+rna)
# colnames(design) <- levels(rna)
# aw <- arrayWeights(exprs(exampleSummaryData.filt), design)
# aw
# fit <- lmFit(exprs(exampleSummaryData.filt), design, weights=aw)
# contrasts <- makeContrasts(UHRR-Brain, levels=design)
# contr.fit <- eBayes(contrasts.fit(fit, contrasts))
# topTable(contr.fit, coef=1)
#
## --------------------------------------------------------------------------
limmaRes <- limmaDE(exampleSummaryData.filt, SampleGroup="SampleFac")
limmaRes
DesignMatrix(limmaRes)
ContrastMatrix(limmaRes)
ArrayWeights(limmaRes)
plot(limmaRes)
## --------------------------------------------------------------------------
gr <- as(exampleSummaryData.filt[,1:5], "GRanges")
gr
## ----toGRangeslgr----------------------------------------------------------
lgr <- as(limmaRes, "GRanges")
lgr
## --------------------------------------------------------------------------
lgr <- lgr[[1]]
lgr[order(lgr$LogOdds,decreasing=T)]
lgr[p.adjust(lgr$PValue)<0.05]
## --------------------------------------------------------------------------
library(GenomicRanges)
HBE1 <- GRanges("chr11", IRanges(5289580,5291373),strand="-")
lgr[lgr %over% HBE1]
## ----eval=FALSE------------------------------------------------------------
# library(ggbio)
# library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# tx <- TxDb.Hsapiens.UCSC.hg19.knownGene
# p1 <- autoplot(tx, which=HBE1)
# p2 <- autoplot(lgr[lgr %over% HBE1])
# tracks(p1,p2)
# id <- plotIdeogram(genome="hg19", subchr="chr11")
# tracks(id,p1,p2)
## ----eval=FALSE------------------------------------------------------------
# plotGrandLinear(lgr, aes(y = LogFC))
## ----eval=FALSE------------------------------------------------------------
# rawdata <- channel(exampleSummaryData, "G")
# normdata <- normaliseIllumina(rawdata)
#
# makeGEOSubmissionFiles(normdata,rawdata)
#
## ----eval=FALSE------------------------------------------------------------
# download.file(
# "ftp://ftp.ncbi.nlm.nih.gov/geo/platforms/GPL6nnn/GPL6947/annot/GPL6947.annot.gz",
# destfile="GPL6947.annot.gz"
# )
#
# makeGEOSubmissionFiles(normdata,rawdata,softTemplate="GPL6947.annot.gz")
#
## ----eval=FALSE------------------------------------------------------------
# library(GEOquery)
# url <- "ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/GSE33126/"
# filenm <- "GSE33126_series_matrix.txt.gz"
# if(!file.exists("GSE33126_series_matrix.txt.gz")) download.file(paste(url, filenm, sep=""), destfile=filenm)
# gse <- getGEO(filename=filenm)
# head(exprs(gse))
#
## ----eval=FALSE------------------------------------------------------------
# summaryData <- as(gse, "ExpressionSetIllumina")
# summaryData
# head(fData(summaryData))
## ----eval=FALSE------------------------------------------------------------
# fData(summaryData)$Status <-
# ifelse(fData(summaryData)$PROBEQUALITY=="No match","negative","regular" )
#
# Detection(summaryData) <- calculateDetection(summaryData,
# status=fData(summaryData)$Status)
#
## ----eval=FALSE------------------------------------------------------------
# summaryData.norm <- normaliseIllumina(summaryData,method="neqc",
# status=fData(summaryData)$Status)
# boxplot(summaryData.norm)
## ----eval=FALSE------------------------------------------------------------
#
# limmaResults <- limmaDE(summaryData.norm, "source_name_ch1")
# limmaResults
## ----readBeadSummary, eval=FALSE-------------------------------------------
#
# library(beadarray)
# dataFile = "AsuragenMAQC-probe-raw.txt"
# qcFile = "AsuragenMAQC-controls.txt"
# BSData = readBeadSummaryData(dataFile = dataFile,
# qcFile = qcFile, controlID = "ProbeID",
# skip = 0, qc.skip = 0, qc.columns = list(exprs = "AVG_Signal",
# Detection = "Detection Pval"))
#
## ----readIDAT, eval=FALSE--------------------------------------------------
# library(beadarray)
# library(GEOquery)
# downloadDir <- tempdir()
# getGEOSuppFiles("GSE27073", makeDirectory = FALSE, baseDir = downloadDir)
# idatFiles <- list.files(path = downloadDir, pattern = ".idat.gz", full.names=TRUE)
# sapply(idatFiles, gunzip)
# idatFiles <- list.files(path = downloadDir, pattern = ".idat", full.names=TRUE)
# BSData <- readIdatFiles(idatFiles)
## ----options, echo=FALSE, eval=TRUE-------------------------------------------
options(width = 80)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.