R/PRIOR_FUNCTIONS.R

Defines functions BB_Fun Prior_fun EstPrior BetaFun

Documented in BB_Fun BetaFun EstPrior Prior_fun

#' @title Estimate capture efficiency for cells
#'
#' @description  This function estimates cell specific
#' capture efficiencies (\code{BETA_vec}) using mean raw counts of
#' a subset of genes that is an input for bayNorm. A specific
#' method is used to exclude genes with high expression or high
#' drop-out are excluded.
#'
#' @param Data A matrix of single-cell expression where rows
#' are genes and columns are samples (cells). \code{Data}
#' can be of class \code{SummarizedExperiment} (the
#' assays slot contains the expression matrix,
#' is named "Counts"), just \code{matrix} or sparse matrix.
#' @param MeanBETA Mean capture efficiency of the scRNAseq data.
#'  This can be estimated via spike-ins or other methods.
#' @return List containing: \code{BETA}: a vector of capture efficiencies,
#'  which is of length number of cells;
#'  \code{Selected_genes}: a subset of
#'   genes that are used for estimating BETA.
#'
#' @examples
#' data('EXAMPLE_DATA_list')
#' BETA_out<-BetaFun(Data=EXAMPLE_DATA_list$inputdata,
#' MeanBETA=0.06)
#' @importFrom Matrix colSums rowMeans t
#' @importFrom SingleCellExperiment SingleCellExperiment
#' @importFrom SummarizedExperiment SummarizedExperiment
#' assayNames assays colData
#' @export
BetaFun <- function(Data, MeanBETA) {
##@ #importFrom Matrix colSums rowMeans
  
    #Set matrix as object for input data
    Data<-Check_input(Data)
    

    xx<-Matrix::colSums(Data)
    #Normcount <- t_sp(t_sp(Data)/xx) * mean(xx)
    Normcount <- Matrix::t(Matrix::t(Data)/xx) * mean(xx)
    
    
    means <- Matrix::rowMeans(Normcount)
    lmeans <- log(means)
    med <- apply(log(Normcount + 1), 1, function(x) {
        median(x)
    })
    mad <- apply(log(Normcount + 1), 1, function(x) {
        mad(x)
    })
    bound <- med + 3 * mad
    maxlogGene <- apply(log(Normcount + 1), 1, max)
    ind <- which(maxlogGene < bound)
    dropout = apply(Data, 1, function(x) {
        length(which(x == 0))/length(x)
    })
    Select_ind <- intersect(ind, which(dropout < 0.35))
    Selected_genes <- rownames(Data)[Select_ind]

    temppp <- Matrix::colSums(Data[Select_ind, ])
    BETA <- temppp/mean(temppp) * MeanBETA
    if (length(which(BETA >= 1)) > 0) {
        BETA[BETA >= 1] = max(BETA[BETA < 1])
    }
    if (length(which(BETA <= 0)) > 0) {
        BETA[BETA <= 0] = min(BETA[BETA > 0])
    }
    
    names(BETA) <- colnames(Data)
    
    return(list(BETA = BETA, Selected_genes = Selected_genes))
}

#' @title Estimate size and mu for Negative Binomial distribution
#' for each gene using MME method
#'
#' @description  Input raw data and return
#' estimated size and mu for each gene using the MME method.
#' @param Data A matrix of single-cell expression where rows
#' are genes and columns are samples (cells). \code{Data}
#' can be of class \code{SummarizedExperiment} (the
#' assays slot contains the expression matrix,
#' is named "Counts"), just \code{matrix} or sparse matrix.
#' @param verbose print out status messages. Default is TRUE.
#'
#' @details mu and size are two parameters of the prior that
#' need to be specified for each gene in bayNorm.
#' They are parameters of negative binomial distribution.
#' The variance is \eqn{mu + mu^2/size} in this parametrization.
#'
#' @return  List containing estimated mu and
#' size for each gene.
#'
#' @examples
#' data('EXAMPLE_DATA_list')
#' #Return estimated mu and size for each gene using MME method.
#' MME_est<-EstPrior(Data=EXAMPLE_DATA_list$inputdata[,seq(1,30)],
#' verbose=TRUE)
#' @import  fitdistrplus
#' @import BiocParallel
#' @importFrom Matrix colSums rowSums rowMeans t
#' @importFrom SingleCellExperiment SingleCellExperiment
#' @importFrom SummarizedExperiment SummarizedExperiment
#' assayNames assays colData
#' @export
EstPrior <- function(Data,verbose = TRUE) {


    #Set matrix as object for input data
    Data<-Check_input(Data)
    



    # FUNN_fitdistrplus<-function(x,Data=Data){
    # 
    #     suppressWarnings(fitre<-   fitdistrplus::fitdist(
    #         Data[x,], "nbinom",
    #         method = "mme",
    #         keepdata = FALSE))
    # 
    # 
    #     return(coef(fitre))
    # }
    # 
    # 
    # workers=ifelse(parallel,NCores,1)
    # 
    # BPPARAM=SnowParam(workers=workers,progressbar=TRUE,type='SOCK')
    # suppressWarnings(temp_result<-bplapply(seq(1,dim(Data)[1]),
    #                       FUNN_fitdistrplus,Data=Data,BPPARAM=BPPARAM))
    # CoefDat<-do.call(rbind,temp_result)
    # rownames(CoefDat) <- rownames(Data)
    # M_ave_ori <- CoefDat[, 2]
    # size_est <- CoefDat[, 1]
    
    #Vectorization make computation faster
    # n=dim(Data)[2];
    # m = Matrix::rowMeans(Data)
    # #v = (n - 1) / n * apply(Data,1,var);
    # v = (n - 1) / n * (Matrix::rowSums((Data-m)^2)/(n-1));
    # mme_size= m^2/(v - m);
    # mme_size[v<=m] =NaN;
    # 
    # M_ave_ori <- m
    # size_est <- mme_size
    # 
    # 
    # names(M_ave_ori)<-rownames(Data)
    # names(size_est)<-rownames(Data)
    # 
    # if (verbose) {
    #     message("Priors estimation based on MME method has completed.")
    # }
    # 
    # return(list(MU = M_ave_ori, SIZE = size_est))
    
    
    #Rcpp version
    rout<-EstPrior_sprcpp(Data=Data)
    rout[[1]]<-as.vector(rout[[1]])
    rout[[2]]<-as.vector(rout[[2]])
    rout[[3]]<-as.vector(rout[[3]])
    rout[[2]][rout[[3]]<=rout[[1]]] =NaN;

    M_ave_ori<-rout[[1]]
    size_est<-rout[[2]]
    names(M_ave_ori)<-rownames(Data)
    names(size_est)<-rownames(Data)

    if (verbose) {
        message("Priors estimation based on MME method has completed.")
    }

    return(list(MU = M_ave_ori, SIZE = size_est))
}
#' @title   A wrapper function of \code{EstPrior}
#' and \code{AdjustSIZE_fun}
#'
#' @description   A wrapper function for estimating the parameters
#' of prior using the hybrid method adjusted MME estimates based
#' on maximization of marginal likelihood. Input raw data and a
#' vector of capture efficiencies of cells.
#' @param Data A matrix of single-cell expression where rows
#' are genes and columns are samples (cells). \code{Data}
#' can be of class \code{SummarizedExperiment} (the
#' assays slot contains the expression matrix,
#' is named "Counts"), just \code{matrix} or sparse matrix.
#' @param  BETA_vec A vector of capture efficiencies of cells.
#' @param  parallel If TRUE, 5 cores will be used for
#' parallelization. Default is TRUE.
#' @param  NCores number of cores to use, default is 5.
#' This will be used to set up a parallel environment
#' using either MulticoreParam (Linux, Mac) or
#' SnowParam (Windows) with \code{NCores} using the
#' package \code{BiocParallel}.
#' @param  FIX_MU If TRUE, then 1D optimization, otherwise
#' 2D optimization (slow). Default is TRUE.
#' @param  GR If TRUE, the gradient function will be used
#' in optimization. However since the gradient function
#' itself is very complicated, it does not help too much
#' in speeding up. Default is FALSE.
#' @param  BB_SIZE If TRUE, estimate BB size, and then use
#' it for adjusting MME SIZE. Use the adjusted MME size
#' for bayNorm. Default is TRUE.
#' @param verbose Print out status messages. Default is TRUE.
#'
#' @details By Default, this function will estimate mu and
#' size for each gene using MME method. If \code{BB_size}
#' is enable, spectral projected gradient method from BB
#' package will be implemented to estimate 'BB size' by
#' maximizing marginal likelihood function. MME estimated
#' size will be adjusted according to BB size. BB size itself
#' will not be used in bayNorm this is because that in
#' our simulation we found that MME estimated mu and size
#' have more accurate relationship, but MME estimated
#' size deviates from the true value. BB size is overall
#' more close to the true size but it does not possess a
#' reasonable relationship with either MME estimated mu or
#' BB estimated mu.
#'
#'
#' @return  List of estimated parameters: mean
#' expression of genes
#' and size of each gene.
#'
#' @examples
#' data('EXAMPLE_DATA_list')
#'PRIOR_RESULT<-Prior_fun(Data=EXAMPLE_DATA_list$inputdata[,seq(1,30)],
#' BETA_vec = EXAMPLE_DATA_list$inputbeta[seq(1,30)],parallel=FALSE,
#' NCores=5,FIX_MU=TRUE,GR=FALSE,BB_SIZE=TRUE,verbose=TRUE)
#'
#' @import parallel
#' @import foreach
#' @importFrom SingleCellExperiment SingleCellExperiment
#' @import doSNOW
#' @importFrom Matrix colSums rowSums t
#' @importFrom SummarizedExperiment SummarizedExperiment
#' assayNames assays colData
#' @export
#'
Prior_fun <- function(
    ##@ importFrom Matrix colSums
    Data, BETA_vec, parallel = TRUE,
    NCores = 5, FIX_MU = TRUE,GR = FALSE,
    BB_SIZE = TRUE, verbose = TRUE) {

    #Set matrix as object for input data
    Data<-Check_input(Data)
    

    #normcount_N <- t(t(Data)/colSums(Data)) * mean(colSums(Data)/BETA_vec)
    #normcount_N <- t_sp(t_sp(Data)/BETA_vec)
    normcount_N <- Matrix::t(Matrix::t(Data)/BETA_vec)
    
    
    Priors <- EstPrior(normcount_N, verbose = verbose)
    M_ave_ori <- Priors$MU
    size_est <- Priors$SIZE
    size_est[is.na(size_est)] <- min(size_est[!is.na(size_est)])
    MME_prior <- cbind(M_ave_ori, size_est)
    MME_prior <- as.data.frame(MME_prior)
    rownames(MME_prior) <- rownames(Data)
    colnames(MME_prior) <- c("MME_MU", "MME_SIZE")


    if (BB_SIZE) {
        if (verbose) {
            message("Start optimization using spg from BB package.
This part may be time-consuming.")
        }
        BB_size <- BB_Fun(
            Data, BETA_vec,
            INITIAL_MU_vec = MME_prior$MME_MU,
            INITIAL_SIZE_vec = MME_prior$MME_SIZE,
            MU_lower = min(MME_prior$MME_MU),
            MU_upper = max(MME_prior$MME_MU),
            SIZE_lower = min(MME_prior$MME_SIZE),
            SIZE_upper = ceiling(
                max(MME_prior$MME_SIZE)),
            parallel = parallel,
            NCores = NCores,
            FIX_MU = FIX_MU,
            GR = GR)

        BB_prior <- BB_size


        if (FIX_MU) {
            BB_prior <- cbind(BB_prior, MME_prior$MME_MU)
            colnames(BB_prior) <- c("BB_SIZE", "MME_MU")
            rownames(BB_prior)<-rownames(Data)
        }

        vec <- BB_prior[,1]
        MME_SIZE_adjust <- AdjustSIZE_fun(
            vec,MME_prior$MME_MU,MME_prior$MME_SIZE)

        if (verbose) {
            message("Prior estimation has completed!")
        }
        names(MME_SIZE_adjust)<-rownames(Data)
        rownames(MME_prior)<-rownames(Data)


        return(list(
            MME_prior = MME_prior, BB_prior = BB_prior,
            MME_SIZE_adjust = MME_SIZE_adjust,BETA_vec=BETA_vec))
    }

    return(list(MME_prior = MME_prior,BETA_vec=BETA_vec))
}


#' @title Estimating size for each gene by
#' either 1D or 2D maximization of marginal distribution
#'
#' @description  Estimating parameters of the prior distribution
#' for each gene by maximizing marginal distribution: 1D
#' (optimize with respect to size using MME estimate of mu,
#' 2D (optimize with respect to both mu and size)
#'
#' @param Data A matrix of single-cell expression where rows
#' are genes and columns are samples (cells). \code{Data}
#' can be of class \code{SummarizedExperiment} (the
#' assays slot contains the expression matrix,
#' is named "Counts"), just \code{matrix} or sparse matrix.
#' @param  BETA_vec A vector of capture efficiencies
#' (probabilities) of cells.
#' @param  INITIAL_MU_vec Mean expression of genes,
#' can be estimated from \code{EstPrior}.
#' @param  INITIAL_SIZE_vec size of genes (size is a parameter in
#' NB distribution), can come from EstPrior.
#' @param  MU_lower The lower bound for the mu.(Only need it when
#' you want to do 2D optimization). Default is 0.01.
#' @param  MU_upper The upper bound for the mu.(Only need it when
#' you want to do 2D optimization). Default is 500.
#' @param  SIZE_lower The lower bound for the size. Default is 0.01.
#' @param  SIZE_upper The upper bound for the size. Default is 30.
#' @param  parallel If TRUE, \code{NCores} cores
#' will be used for parallelization. Default is TRUE.
#' @param  NCores number of cores to use, default is 5. This will
#' be used to set up a parallel environment using either
#' MulticoreParam (Linux, Mac) or SnowParam (Windows) with NCores
#' using the package BiocParallel.
#' @param  FIX_MU If TRUE, then 1D optimization, otherwise 2D
#' optimization (slow).
#' @param  GR If TRUE, the gradient function will be used in
#' optimization. However since the gradient function itself is
#' very complicated, it does not help too much in speeding up.
#' Default is FALSE.
#' @return  BB estimated size (1D optimization) or size and mu (2D optimization).
#'
#'
#' @examples
#' data('EXAMPLE_DATA_list')
#' BB_RESULT<-BB_Fun(Data=EXAMPLE_DATA_list$inputdata[,seq(1,30)],
#' BETA_vec = EXAMPLE_DATA_list$inputbeta[seq(1,30)],
#' INITIAL_MU_vec=EXAMPLE_DATA_list$mu,
#' INITIAL_SIZE_vec=EXAMPLE_DATA_list$size,
#' MU_lower=0.01,MU_upper=500,SIZE_lower=0.01,
#' SIZE_upper=30,parallel=FALSE,NCores=5,FIX_MU=TRUE,GR=FALSE)
#'
#'
#' @import parallel
#' @import foreach
#' @import doSNOW
#' @import utils
#' @import iterators
#' @import methods
#' @import BiocParallel
#' @importFrom SingleCellExperiment SingleCellExperiment
#' @importFrom SummarizedExperiment SummarizedExperiment
#' assayNames assays colData
#' @useDynLib bayNorm
#' @importFrom Rcpp sourceCpp
#'
#' @export
#'
#'
BB_Fun <- function(
    Data, BETA_vec, INITIAL_MU_vec, INITIAL_SIZE_vec,
    MU_lower = 0.01, MU_upper = 500, SIZE_lower = 0.01,
    SIZE_upper = 30,parallel = FALSE, NCores = 5,
    FIX_MU = TRUE, GR = FALSE) {

    # if(!is(Data, 'sparseMatrix')){
    #     if (!(methods::is(Data, "SummarizedExperiment")) &
    #         !(methods::is(Data, "SingleCellExperiment"))) {
    #         Data <- as(as.matrix(Data), "dgCMatrix")
    #     }
    #     
    # }
    
    #matrix object: faster access to the row than dgCMatrix
    #Set matrix as object for input data
    Data<-Check_input(Data)


    Geneind <- NULL
    
    if(!GR){
        GR_pass<-NULL
    } else if(GR){
        if(FIX_MU){
            GR_pass<-GradientFun_NB_1D
        } else{
            GR_pass<-GradientFun_NB_2D
        }
    }
    
    if(FIX_MU){
        lower_input <- SIZE_lower
        upper_input <- SIZE_upper
        fn_input <- MarginalF_NB_1D
    } else{
        lower_input <- c(SIZE_lower, MU_lower)
        upper_input <- c(SIZE_upper, MU_upper)
        fn_input <- MarginalF_NB_2D
    }
    
    
    combinee<-ifelse(FIX_MU,c,rbind)
    

    if (parallel) {
        cluster <- makeCluster(NCores, type = "SOCK")
        registerDoSNOW(cluster)
        getDoParWorkers()
        
        iterations <- dim(Data)[1]
        pb <- txtProgressBar(max = iterations, style = 3)
        progress <- function(n) setTxtProgressBar(pb, n)
        opts <- list(progress = progress)
        
        BB_parmat <- foreach(
            Geneind = seq_len(dim(Data)[1]),
            .combine = combinee,
            .options.snow = opts) %dopar% {
                # print(Geneind)
                mu <- INITIAL_MU_vec[Geneind]
                size <- INITIAL_SIZE_vec[Geneind]
                m_observed = Data[Geneind, ]
                
                if(FIX_MU){
                    par_input<-size
                    BB_opt <- BB::spg(
                        par = par_input, fn = fn_input,
                        gr = GR_pass,MU = mu,
                        m_observed = m_observed,
                        BETA = BETA_vec,
                        control = list(
                            maximize = TRUE,
                            trace = FALSE,
                            maxfeval = 500),
                        lower = lower_input,
                        upper = upper_input)
                } else{
                    par_input<-c(size, mu)
                    BB_opt <- BB::spg(
                        par = par_input, fn = fn_input,
                        gr = GR_pass,
                        m_observed = m_observed,
                        BETA = BETA_vec,
                        control = list(
                            maximize = TRUE,
                            trace = FALSE,
                            maxfeval = 500),
                        lower = lower_input,
                        upper = upper_input)
                }
                
                
                
                
                optimal_par <- BB_opt$par
                return(optimal_par)
            }
        
        close(pb)
        stopCluster(cluster)
        
        
    } else {
        
        iterations <- dim(Data)[1]
        pb <- txtProgressBar(max = iterations, style = 3)
        progress <- function(n) setTxtProgressBar(pb, n)
        opts <- list(progress = progress)
        
        
        BB_parmat <- foreach(
            Geneind = seq_len(dim(Data)[1]),
            .combine = combinee,.options.snow = opts) %do% {
                
                setTxtProgressBar(pb, Geneind)
                
                mu <- INITIAL_MU_vec[Geneind]
                size <- INITIAL_SIZE_vec[Geneind]
                m_observed = Data[Geneind, ]
                
                if(FIX_MU){
                    par_input<-size
                    BB_opt <- BB::spg(
                        par = par_input, fn = fn_input,
                        gr = GR_pass,MU = mu,
                        m_observed = m_observed,
                        BETA = BETA_vec,
                        control = list(
                            maximize = TRUE,
                            trace = FALSE,
                            maxfeval = 500),
                        lower = SIZE_lower,
                        upper = SIZE_upper)
                } else{
                    par_input<-c(size, mu)
                    BB_opt <- BB::spg(
                        par = par_input, fn = fn_input,
                        gr = GR_pass,
                        m_observed = m_observed,
                        BETA = BETA_vec,
                        control = list(
                            maximize = TRUE,
                            trace = FALSE,
                            maxfeval = 500),
                        lower = SIZE_lower,
                        upper = SIZE_upper)
                }
                
                
                
                
                #
                optimal_par <- BB_opt$par
                return(optimal_par)
            }
        close(pb)
        
    }
    
    if(FIX_MU){
        names(BB_parmat) <- rownames(Data)
        
    } else{
        rownames(BB_parmat) <- rownames(Data)
        colnames(BB_parmat)<-c('size','mu')
    }
    
    return(BB_parmat)
}

Try the bayNorm package in your browser

Any scripts or data that you put into this service are public.

bayNorm documentation built on Nov. 8, 2020, 8:25 p.m.