Description Usage Arguments Details Value References Examples
This is a supplementary wrapper function for bayNorm. It is useful if one has already estimated prior parameters and wants to simulate 2D or 3D normalized output using the same prior estimates.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
Data |
A matrix of single-cell expression where rows
are genes and columns are samples (cells). |
PRIORS |
A list of estimated prior parameters obtained from bayNorm. |
input_params |
A list of input parameters
which have been used: |
mode_version |
If TRUE, bayNorm return mode version normalized data which is of 2D matrix instead of 3D array. Default is FALSE. |
mean_version |
If TRUE, bayNorm return mean version normalized data which is of 2D matrix instead of 3D array. Default is FALSE. |
S |
The number of samples you would like to
generate from estimated posterior distribution
(The third dimension of 3D array). Default is 20.
S needs to be specified if |
parallel |
If TRUE, |
NCores |
number of cores to use, default is 5. This will be used to set up a parallel environment using either MulticoreParam (Linux, Mac) or SnowParam (Windows) with NCores using the package BiocParallel. |
BB_SIZE |
If TRUE (default), use adjusted size for normalization. The adjusted size is obtained by adjusting MME estimated size by a factor. The factor is calculated based on both MME estimated size and BB estimated size. If FALSE, use MME estimated SIZE. |
verbose |
print out status messages. Default is TRUE. |
out.sparse |
Only valid for mean version: Whether the output is of type dgCMatrix or not. Default is FALSE. |
If you have run bayNorm before and obtained a list of estimated prior parameters, then you may not want to run parameter estimation again. You can just use previous estimated parameters for obtaining 3D or 2D normalized data.
List containing 3D arrays of normalized
expression (if mode_version
=FALSE) or 2D matrix
of normalized expression (if mode_version
=TRUE
or mean_version
=TRUE),
a list contains estimated priors and a list contains
input parameters used: BETA_vec
,
Conditions
(if specified),
UMI_sffl
(if specified), Prior_type
,
FIX_MU
, BB_SIZE
and GR
.
Wenhao Tang, Francois Bertaux, Philipp Thomas, Claire Stefanelli, Malika Saint, Samuel Blaise Marguerat, Vahid Shahrezaei bayNorm: Bayesian gene expression recovery, imputation and normalisation for single cell RNA-sequencing data Bioinformatics, btz726; doi: 10.1093/bioinformatics/btz726
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data('EXAMPLE_DATA_list')
#Return 3D array normalzied data:
bayNorm_3D<-bayNorm(
Data=EXAMPLE_DATA_list$inputdata[,seq(1,30)],
BETA_vec = EXAMPLE_DATA_list$inputbeta[seq(1,30)]
,mode_version=FALSE,parallel =FALSE)
#Now if you want to generate 2D matrix using the same prior
#estimates as generated before:
bayNorm_2D<-bayNorm_sup(
Data=EXAMPLE_DATA_list$inputdata[,seq(1,30)]
,PRIORS=bayNorm_3D$PRIORS,
input_params = bayNorm_3D$input_params
,mode_version=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.