Nothing
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("BAnOCC")
## ----load, eval=TRUE----------------------------------------------------------
library(banocc)
## ----run-banocc-help, eval=FALSE----------------------------------------------
# ?run_banocc
# ?get_banocc_output
## ----rerun, cache=TRUE, echo=FALSE--------------------------------------------
rerun <- 0
## ----basic-run-banocc, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
data(compositions_null)
compiled_banocc_model <- rstan::stan_model(model_code = banocc::banocc_model)
b_fit <- banocc::run_banocc(C = compositions_null, compiled_banocc_model=compiled_banocc_model)
b_output <- banocc::get_banocc_output(banoccfit=b_fit)
## ----input-hyperparameters, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
p <- ncol(compositions_null)
b_fit_hp <- banocc::run_banocc(C = compositions_null,
compiled_banocc_model = compiled_banocc_model,
n = rep(0, p),
L = 10 * diag(p),
a = 0.5,
b = 0.01)
## ----sampling-sampling, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
b_fit_sampling <- banocc::run_banocc(C = compositions_null,
compiled_banocc_model = compiled_banocc_model,
chains = 2,
iter = 11,
warmup = 5,
thin = 2)
## ----sampling-cores, eval=FALSE-----------------------------------------------
# # This code is not run
# b_fit_cores <- banocc::run_banocc(C = compositions_null,
# compiled_banocc_model = compiled_banocc_model,
# chains = 2,
# cores = 2)
## ----sampling-init, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
init <- list(list(m = rep(0, p),
O = diag(p),
lambda = 0.02),
list(m = runif(p),
O = 10 * diag(p),
lambda = runif(1, 0.1, 2)))
b_fit_init <- banocc::run_banocc(C = compositions_null,
compiled_banocc_model = compiled_banocc_model,
chains = 2,
init = init)
## ---- eval=FALSE--------------------------------------------------------------
# ?stan
## ----output-ci, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
# Get 90% credible intervals
b_out_90 <- banocc::get_banocc_output(banoccfit=b_fit,
conf_alpha = 0.1)
# Get 99% credible intervals
b_out_99 <- banocc::get_banocc_output(banoccfit=b_fit,
conf_alpha = 0.01)
## ----eval-convergence, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
# Default is to evaluate convergence
b_out_ec <- banocc::get_banocc_output(banoccfit=b_fit)
# This can be turned off using `eval_convergence`
b_out_nec <- banocc::get_banocc_output(banoccfit=b_fit,
eval_convergence = FALSE)
## ----show-eval-convergence, eval=TRUE-----------------------------------------
# Iterations are too few, so estimates are missing
b_out_ec$Estimates.median
# Convergence was not evaluated, so estimates are not missing
b_out_nec$Estimates.median
## ----output-extra, eval=TRUE, cache=TRUE, dependson=c('rerun'), results="hide"----
# Get the smallest credible interval width that includes zero
b_out_min_width <- banocc::get_banocc_output(banoccfit=b_fit,
get_min_width = TRUE)
# Get the scaled neighborhood criterion
b_out_snc <- banocc::get_banocc_output(banoccfit=b_fit,
calc_snc = TRUE)
## ----traceplot, eval=TRUE, cache=TRUE-----------------------------------------
# The inverse covariances of feature 1 with all other features
rstan::traceplot(b_fit$Fit, pars=paste0("O[1,", 2:9, "]"))
## ----traceplot-warmup, eval=TRUE, cache=TRUE----------------------------------
# The inverse covariances of feature 1 with all other features, including warmup
rstan::traceplot(b_fit$Fit, pars=paste0("O[1,", 2:9, "]"),
inc_warmup=TRUE)
## ----Rhat, eval=TRUE, cache=TRUE----------------------------------------------
# This returns a named vector with the Rhat values for all parameters
rhat_all <- rstan::summary(b_fit$Fit)$summary[, "Rhat"]
# To see the Rhat values for the inverse covariances of feature 1
rhat_all[paste0("O[1,", 2:9, "]")]
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# # The above plot is from Dropbox/hutlab/Emma/paper1/writeup/figures/supplemental/lambbda_behavior.png
## ----model, eval=FALSE--------------------------------------------------------
# # This code is not run
# cat(banocc::banocc_model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.