Nothing
## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown()
## ----message = FALSE----------------------------------------------------------
library(GenomicRanges)
library(Rsamtools)
library(bamsignals)
## -----------------------------------------------------------------------------
bampath <- system.file("extdata", "randomBam.bam", package="bamsignals")
genes <-
get(load(system.file("extdata", "randomAnnot.Rdata", package="bamsignals")))
genes
## -----------------------------------------------------------------------------
#sequence names of the GenomicRanges object
seqinfo(genes)
#sequence names in the bam file
bf <- Rsamtools::BamFile(bampath)
seqinfo(bf)
#checking if there is an index
file.exists(gsub(".bam$", ".bam.bai", bampath))
## -----------------------------------------------------------------------------
proms <- GenomicRanges::promoters(genes, upstream=100, downstream=100)
counts <- bamCount(bampath, proms, verbose=FALSE)
str(counts)
## -----------------------------------------------------------------------------
counts <- bamCount(bampath, proms, verbose=FALSE, shift=75)
str(counts)
## -----------------------------------------------------------------------------
strand(proms)
counts <- bamCount(bampath, proms, verbose=FALSE, ss=TRUE)
str(counts)
## -----------------------------------------------------------------------------
sigs <- bamProfile(bampath, genes, verbose=FALSE)
sigs
## -----------------------------------------------------------------------------
#CountSignals is conceptually like a list
lsigs <- as.list(sigs)
stopifnot(length(lsigs[[1]])==length(sigs[1]))
#sapply and lapply can be used as if we were using a list
stopifnot(all(sapply(sigs, sum) == sapply(lsigs, sum)))
## -----------------------------------------------------------------------------
stopifnot(all(width(sigs)==width(genes)))
## -----------------------------------------------------------------------------
sssigs <- bamProfile(bampath, genes, verbose=FALSE, ss=TRUE)
sssigs
## -----------------------------------------------------------------------------
str(sssigs[1])
#summing up the counts from the two strands is the same as using ss=FALSE
stopifnot(colSums(sssigs[1])==sigs[1])
#the width function takes into account that now the signals are strand-specific
stopifnot(width(sssigs)==width(sigs))
#the length function does not, a strand-specific signal is twice as long
stopifnot(length(sssigs[1])==2*length(sigs[1]))
## -----------------------------------------------------------------------------
xlab <- "offset from start of the region"
ylab <- "counts per base pair (negative means antisense)"
main <- paste0("read profile of the region ",
seqnames(genes)[1], ":", start(genes)[1], "-", end(genes)[1])
plot(sigs[1], ylim=c(-max(sigs[1]), max(sigs[1])), ylab=ylab, xlab=xlab,
main=main, type="l")
lines(sssigs[1]["sense",], col="blue")
lines(-sssigs[1]["antisense",], col="red")
legend("bottom", c("sense", "antisense", "both"),
col=c("blue", "red", "black"), lty=1)
## -----------------------------------------------------------------------------
#The promoter regions have all the same width
sigs <- bamProfile(bampath, proms, ss=FALSE, verbose=FALSE)
sssigs <- bamProfile(bampath, proms, ss=TRUE, verbose=FALSE)
sigsMat <- alignSignals(sigs)
sigsArr <- alignSignals(sssigs)
## -----------------------------------------------------------------------------
#the dimensions are [base pair, region]
str(sigsMat)
#the dimensions are [strand, base pair, region]
str(sigsArr)
stopifnot(all(sigsMat == sigsArr["sense",,] + sigsArr["antisense",,]))
## -----------------------------------------------------------------------------
avgSig <- rowMeans(sigsMat)
avgSenseSig <- rowMeans(sigsArr["sense",,])
avgAntisenseSig <- rowMeans(sigsArr["antisense",,])
ylab <- "average counts per base pair"
xlab <- "distance from TSS"
main <- paste0("average profile of ", length(proms), " promoters")
xs <- -99:100
plot(xs, avgSig, ylim=c(0, max(avgSig)), xlab=xlab, ylab=ylab, main=main,
type="l")
lines(xs, avgSenseSig, col="blue")
lines(xs, avgAntisenseSig, col="red")
legend("bottom", c("sense", "antisense", "both"),
col=c("blue", "red", "black"), lty=1)
## -----------------------------------------------------------------------------
binsize <- 20
binnedSigs <- bamProfile(bampath, proms, binsize=binsize, verbose=FALSE)
stopifnot(all(width(binnedSigs)==ceiling(width(sigs)/binsize)))
binnedSigs
## -----------------------------------------------------------------------------
avgBinnedSig <- rowMeans(alignSignals(binnedSigs))
#the counts in the bin are the sum of the counts in each base pair
stopifnot(all.equal(colSums(matrix(avgSig, nrow=binsize)),avgBinnedSig))
#let's plot it
ylab <- "average counts per base pair"
plot(xs, avgSig, xlab=xlab, ylab=ylab, main=main, type="l")
lines(xs, rep(avgBinnedSig, each=binsize)/binsize, lty=2)
legend("topright", c("base pair count", "bin count"), lty=c(1, 2))
## -----------------------------------------------------------------------------
covSigs <- bamCoverage(bampath, genes, verbose=FALSE)
puSigs <- bamProfile(bampath, genes, verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("read coverage and profile of the region ", seqnames(genes)[1],
":", start(genes)[1], "-", end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
type="l")
lines(puSigs[1], lty=2)
legend("topright", c("covering the base pair", "5' end maps to the base pair"),
lty=c(1,2))
## -----------------------------------------------------------------------------
counts.all <- bamCount(bampath, proms, verbose=FALSE)
summary(counts.all)
counts.mapq <- bamCount(bampath, proms, mapq=20, verbose=FALSE)
summary(counts.mapq)
## -----------------------------------------------------------------------------
counts.mapq.noDups <- bamCount(bampath, proms, mapq=20, filteredFlag=1024, verbose=FALSE)
summary(counts.mapq.noDups)
## -----------------------------------------------------------------------------
#5' end falls into regions defined in `proms`
counts.pe.filter <- bamCount(bampath, proms, paired.end="filter", verbose=FALSE)
summary(counts.pe.filter)
#fragment midpoint falls into regions defined in `proms`
counts.pe.midpoint <- bamCount(bampath, proms, paired.end="midpoint", verbose=FALSE)
summary(counts.pe.midpoint)
#counts are similar but not identical
cor(counts.pe.filter, counts.pe.midpoint)
## -----------------------------------------------------------------------------
covSigs <- bamCoverage(bampath, genes, paired.end="extend", verbose=FALSE)
puSigs <- bamProfile(bampath, genes, paired.end="midpoint", verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("Paired end whole fragment coverage and fragment midpoint profile\n",
"of the region ", seqnames(genes)[1], ":", start(genes)[1], "-",
end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
type="l")
lines(puSigs[1], lty=2)
legend("topright", c("covering the base pair", "fragment midpoint maps to the base pair"),
lty=c(1,2))
## -----------------------------------------------------------------------------
counts.monoNucl <- bamCount(bampath, genes, paired.end="midpoint", tlenFilter=c(120,170), verbose=FALSE)
summary(counts.monoNucl)
#Coverage of mononucleosomal fragments
covSigs.monoNucl <- bamCoverage(bampath, genes, paired.end="extend", tlenFilter=c(120,170), verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("Paired end whole fragment coverage for\n",
"of the region ", seqnames(genes)[1], ":", start(genes)[1], "-",
end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
type="l")
lines(covSigs.monoNucl[1], lty=3)
legend("topright", c("all fragment sizes", "mononucleosomal fragments only"),
lty=c(1,3))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.