Nothing
#' Dimensionality reduction through t-SNE
#'
#' @param MAE A multi-assay experiment object
#' @param tax_level The taxon level used for organisms
#' @param color A condition to color data points by e.g. "AGE"
#' @param shape A condition to shape data points by e.g. "SEX"
#' @param k Plot dimensions e.g. c("2D","3D")
#' @param initial_dims The number of dimensions to use in reduction method
#' @param perplexity Optimal number of neighbors
#' @param datatype Datatype to use e.g. c("logcpm", "relabu", "counts")
#' @param tsne_cache Pass the cached data back into the function
#' @return A list with a plotly object and cached data
#'
#' @examples
#' data_dir = system.file("extdata/MAE.rds", package = "animalcules")
#' toy_data <- readRDS(data_dir)
#' results <- dimred_tsne(toy_data,
#' tax_level="phylum",
#' color="AGE",
#' shape="GROUP",
#' k="3D",
#' initial_dims=30,
#' perplexity=10,
#' datatype="logcpm")
#' results$plot
#'
#' @import dplyr
#' @import plotly
#' @import tsne
#' @import magrittr
#' @import reshape2
#' @import MultiAssayExperiment
#'
#' @export
dimred_tsne <- function(MAE,
tax_level,
color,
shape=NULL,
k=c("2D","3D"),
initial_dims=30,
perplexity=10,
datatype=c("logcpm", "relabu", "counts"),
tsne_cache=NULL) {
# Extract data
microbe <- MAE[['MicrobeGenetics']]
#host <- MultiAssayExperiment::experiments(MAE)[[2]]
tax_table <- as.data.frame(rowData(microbe)) # organism x taxlev
sam_table <- as.data.frame(colData(microbe)) # sample x condition
counts_table <-
as.data.frame(assays(microbe))[,rownames(sam_table)] # organism x sample
if (is.null(tsne_cache)) {
# Default variables
k <- ifelse(match.arg(k) == "2D", 2, 3)
datatype <- match.arg(datatype)
df <- counts_table %>%
# Sum counts by taxon level
upsample_counts(tax_table, tax_level) %>%
# Choose data type
{
if (datatype == "relabu") {
counts_to_relabu(.)
} else if (datatype == "logcpm") {
counts_to_logcpm(.)
} else {
.
}
} %>%
# Fix constant/zero row
{
if (sum(base::rowSums(as.matrix(.)) == 0) > 0){
. <- .[-which(base::rowSums(as.matrix(.)) == 0),]
} else {
.
}
} %>%
# Transpose
t()
# t-SNE
df.tsne <-
tsne(scale(df), k=k, initial_dims=initial_dims, perplexity=perplexity)
rownames(df.tsne) <- rownames(df)
if (k == 2) {colnames(df.tsne) <-
c("X", "Y")} else {colnames(df.tsne) <- c("X", "Y", "Z")}
} else {
df.tsne <- tsne_cache
k <- ncol(df.tsne)
}
# Merge in covariate information
if (!is.null(shape)) {
df.tsne.m <-
merge(df.tsne, sam_table[, c(color, shape),
drop=FALSE], by=0, all=TRUE)
# When shape is required
# Bypass duplicate colnames if color == shape
shape <- colnames(df.tsne.m)[ncol(df.tsne.m)]
df.tsne.m[[shape]] <- as.factor(df.tsne.m[[shape]])
} else {
df.tsne.m <-
merge(df.tsne, sam_table[, color, drop=FALSE], by=0, all=TRUE)
shape <- 'shape' # Referenced by plotly later
df.tsne.m[[shape]] <- 1 # Constant results in omitting shape
}
# Plotly | Scatterplot
if (k == 2) {
# 2D Plot
p <- plot_ly(df.tsne.m,
x = as.formula("~X"),
y = as.formula("~Y"),
mode = "markers",
color = as.formula(paste("~", color, sep = "")),
symbol = as.formula(paste("~", shape, sep = "")),
type = "scatter",
text = df.tsne.m$Row.names,
marker = list(size = 10))
} else {
# 3D Plot
p <- plot_ly(df.tsne.m,
x = as.formula("~X"),
y = as.formula("~Y"),
z = as.formula("~Z"),
mode = "markers",
color = as.formula(paste("~", color, sep = "")),
symbol = as.formula(paste("~", shape, sep = "")),
symbols = c("circle", "square", "diamond",
"cross", "square-open", "circle-open",
"diamond-open", "x"),
type = "scatter3d",
text = df.tsne.m$Row.names,
marker = list(size = 6))
}
p$p <- NULL # To suppress a shiny warning
return(list(plot=p, data=df.tsne))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.