library(amplican) library(ggplot2) alignments <- data.table::fread(params$alignments) data.table::setDF(alignments) config <- data.frame(data.table::fread(params$config_summary)) height <- plot_height(length(unique(config$ID)))
Read distribution plot - plot shows number of reads assigned during read grouping
Filtered Reads - plot shows percentage of assigned reads that have been recognized as PRIMER DIMERS or filtered based on low alignment score
Edit rates - plot gives overview of percentage of reads (not filtered as PRIMER DIMER) that have edits
Frameshift - plot shows what percentage of reads that have frameshift
Read heterogeneity plot - shows what is the share of each of the unique reads in total count of all reads. The more yellow each row, the less heterogeneity in the reads, more black means reads don't repeat often and are unique
Deletions plot - shows summary of deletions detected after alignments with distinction
for forward (top plot) and reverse (bottom) reads, blue dotted lines represent primers as black
dotted line represents cut site box, for deletions overlapping with cut site box there is distinction
in color
Mismatches plot - shows summary of mismatches detected after alignments split by forward
(top plot) and reverse (bottom) reads, mismatches are colored in the same manner as amplicon
Insertions plot - shows summary of insertions detected after alignments split by forward
(top plot) and reverse (bottom) reads, insertion is shown as right-angled triangle where size of
the insertion corresponds to the width of the triangle, size and transparency of triangle reflect on
the frequency of the insertion
ggplot(data = config, aes(x = as.factor(ID), y = log10(Reads + 1), order = ID)) + geom_bar(stat='identity') + ylab('Number of reads + 1, log10 scaled') + xlab('ID') + theme(legend.position = 'none', axis.text = element_text(size = 12), axis.title = element_text(size = 14, face = 'bold')) + coord_flip() + geom_text(aes(x = as.factor(ID), y = log10(Reads + 1), label = Reads), hjust = -1)
config$PRIMER_DIMER <- config$PRIMER_DIMER * 100/config$Reads config$PRIMER_DIMER[is.nan(config$PRIMER_DIMER)] <- 0 config$Low_Score <- config$Low_Score * 100/config$Reads config$Low_Score[is.nan(config$Low_Score)] <- 0 config_melt <- data.table::melt(data.table::as.data.table(config), id.vars = "ID", measure.vars = c("PRIMER_DIMER", "Low_Score")) ggplot(data = config_melt, aes(x = as.factor(ID), y = value, fill = variable, order = ID)) + geom_bar(stat='identity') + ylab('Percentage of filtered reads') + xlab('ID') + theme(legend.position = 'top', axis.text = element_text(size = 12), axis.title = element_text(size = 14, face = 'bold')) + coord_flip() + labs(fill = "")
config$edit_percentage <- config$Reads_Edited * 100/config$Reads_Filtered config$edit_percentage[is.nan(config$edit_percentage)] <- 0 ggplot(data = config, aes(x = as.factor(ID), y = edit_percentage, order = ID)) + geom_bar(stat='identity') + ylab('Percentage of reads (not filtered) that have edits') + xlab('ID') + theme(legend.position = 'none', axis.text = element_text(size = 12), axis.title = element_text(size = 14, face = 'bold')) + coord_flip() + geom_text(aes(x = as.factor(ID), y = edit_percentage, label = Reads_Edited), hjust = -1)
config$frameshift_percentage <- config$Reads_Frameshifted * 100/config$Reads_Filtered config$frameshift_percentage[is.nan(config$frameshift_percentage)] <- 0 ggplot(data = config, aes(x = as.factor(ID), y = frameshift_percentage, order = ID)) + geom_bar(stat='identity') + ylab('Percentage of reads (not filtered) that have frameshift') + xlab('ID') + theme(legend.position = 'none', axis.text = element_text(size = 12), axis.title = element_text(size = 14, face = 'bold')) + coord_flip() + geom_text(aes(x = as.factor(ID), y = frameshift_percentage, label = Reads_Frameshifted), hjust = -1)
plot_heterogeneity(alignments, config)
alignments_cons <- alignments[alignments$consensus & alignments$overlaps, ] src = sapply(config$ID, function(i) { knitr::knit_expand(text = c( "## {{i}} \n", "### Deletions \n", paste('```r}, echo = F, results = "asis", ', 'fig.width=25, message=F, warning=F}', collapse = ''), paste('p <- amplican::plot_deletions(alignments, config, "{{i}}",', ' params$cut_buffer, params$xlab_spacing)', collapse = ''), '```\n', "### Insertions \n", paste('```r}, echo = F, results = "asis", ', 'fig.width=25, message=F, warning=F}', collapse = ''), paste('p <- amplican::plot_insertions(alignments, config, "{{i}}",', ' params$cut_buffer, params$xlab_spacing)', collapse = ''), '```\n', "### Mismatches \n", paste('```r}, echo = F, results = "asis", ', 'fig.width=25, message=F, warning=F}', collapse = ''), paste('p <- amplican::plot_mismatches(alignments, config, "{{i}}",', ' params$cut_buffer, params$xlab_spacing)', collapse = ''), '```\n', "### Variants \n", paste('```r}, echo = F, message=F, results = "asis", ', 'message=F, warning=F}', collapse = ''), paste('p <- amplican::plot_variants(alignments_cons, config, "{{i}}", ', ' params$cut_buffer)', collapse = ''), '```\n')) }) # knit the source res = knitr::knit_child(text = src, quiet = TRUE) cat(res, sep = '\n')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.