Nothing
#' loess-based retention time deviation correction
#'
#' @param adductSpectra AdductSpec object
#' @param smoothingSpan numeric. fixed smoothing span, argument to loess.
#' If argument is not supplied then optimal smoothing span is
#' calculated for each file seperately.
#' @param nMissing numeric. maximum number of missing files for a
#' MS/MS scan group to be
#' utilized in the loess retention time deviation model.
#' Roughly 15 percent missing values is a good starting point
#' (e.g. nMissing=10 for 68 samples).
#' @param nExtra numeric maximum number of extra scans above
#' the total number of
#' files for a MS/MS scan group to be utilized in the
#' loess retention time deviation model.
#' If a MS/MS scan group consists of many scans far
#' in excess of the number of files
#' then potentially MS/MS scans from large tailing peaks or
#' isobars may be erroneously
#' grouped together and used to adjust retention time incorrectly.
#' @param folds numeric. number of cross validation steps to
#' perform in identifying
#' optimal smoothing span parameter (see: bisoreg package
#' for more details)
#' @param outputFileDir character full path to a directory
#' to save the output images
#' @usage retentionCorr(adductSpectra = NULL,
#' smoothingSpan = NULL, nMissing = 1,
#' nExtra = 1, folds = 7, outputFileDir = NULL)
#' @return LOESS RT models as adductSpectra AdductSpec object
retentionCorr <- function(adductSpectra = NULL,
smoothingSpan = NULL,
nMissing = 1,
nExtra = 1,
folds = 7,
outputFileDir = NULL) {
# error handling
if (is.null(adductSpectra)) {
stop("argument adductSpectra is missing with no default.")
} else if (!is(adductSpectra, 'AdductSpec')) {
stop("argument adductSpectra is not an AdductSpec class object.")
}
metaDataTmp <- metaData(adductSpectra)
# single point rt drift
if (!is.null(metaDataTmp$intStdRtDrift)) {
metaDataTmp$retentionTime <-
as.numeric(metaDataTmp$retentionTime) +
(as.numeric(metaDataTmp$intStdRtDrift) * -1)
} else {
metaDataTmp$retentionTime <- as.numeric(metaDataTmp$retentionTime)
}
nFiles <- length(Specfile.paths(adductSpectra))
nFilesPerGroup <- tapply(metaDataTmp$mzXMLFile,
as.factor(metaDataTmp$interMSMSrtGroups),
function(MSMSgroup) {
length(unique(MSMSgroup))
})[-1]
wellBehaved <- names(nFilesPerGroup)[which(nFilesPerGroup >=
(nFiles - nMissing))]
# check n extra
nExtraScans <- table(metaDataTmp$interMSMSrtGroups)
nExtraScans <- nExtraScans[nExtraScans < {
nFiles + nExtra
}]
wellBehaved <- wellBehaved[wellBehaved %in% names(nExtraScans)]
if (length(wellBehaved) == 0) {
stop(
"Not enough well behaved MS/MS peak groups for retention
time correction: consider reducing the value of the nMissing
parameter and/or increasing the nExtra parameter."
)
}
wellBehavedMeta <-
metaDataTmp[metaDataTmp$interMSMSrtGroups %in%
wellBehaved, , drop = FALSE]
medianRts <- tapply(wellBehavedMeta$retentionTime,
wellBehavedMeta$interMSMSrtGroups,
median) / 60
minMaxRt <- c(min(metaDataTmp$retentionTime) / 60,
max(metaDataTmp$retentionTime) / 60)
rtSeqTmp <- seq(minMaxRt[1], minMaxRt[2], 0.1)
# plot deviation from RT loess
rtDevModels(adductSpectra) <- vector("list", nFiles)
minMaxRtDf <- matrix(0, ncol = 2, nrow = nFiles)
rtDevAllTmp <- vector("list", nFiles)
if (!is.null(smoothingSpan)) {
message(
"calculating LOESS fit
(fixed smoothing span: ",
smoothingSpan,
") retention drift (n=",
length(wellBehaved),
" well-behaved retention time groups)...\n"
)
} else {
message(
"calculating LOESS fit (",
folds,
"-fold CV)
retention drift (n=",
length(wellBehaved),
" well-behaved retention time groups)...\n"
)
}
metaDataTmp$predRtLoess <- 0
pb <- txtProgressBar(min = 0,
max = nFiles,
style = 3)
for (i in seq_len(nFiles)) {
setTxtProgressBar(pb, i)
fileNameTmp <- basename(Specfile.paths(adductSpectra))[i]
fileIndx <- metaDataTmp$mzXMLFile %in% fileNameTmp
fileMetaTmp <- metaDataTmp[fileIndx, , drop = FALSE]
# mean rt each MS/MS rt group
meanRtAll <- tapply(
fileMetaTmp$retentionTime,
as.factor(fileMetaTmp$interMSMSrtGroups),
mean
)
indxWellBeTmp <- match(wellBehaved, names(meanRtAll))
indxWellBeTmp <-
indxWellBeTmp[complete.cases(indxWellBeTmp)]
rtsFileTmp <- meanRtAll[indxWellBeTmp] / 60
# deviation of rts from median
deviationMed <- rtsFileTmp - medianRts[complete.cases(match(names(
medianRts), names(rtsFileTmp)))]
# add min and max gradient rt drifts to prevent wild predictions at
#start and finish
deviationMed <-
c(deviationMed, deviationMed[which.min(rtsFileTmp)],
deviationMed[which.max(rtsFileTmp)])
rtsFileTmp <- c(rtsFileTmp, minMaxRt)
# loess model retentionTime and retentionTime deviation optimal loess
# predict(adductSpectra@rtDevModels[[i]], newdata=rtSeqTmp)
if (!is.null(smoothingSpan)) {
rtDevModels(adductSpectra)[[i]] <- loess(deviationMed ~ rtsFileTmp,
span = smoothingSpan,
surface = "direct")
} else {
rtDevModels(adductSpectra)[[i]] <- loessWrapperMod(rtsFileTmp,
deviationMed,
folds = folds)
}
# predict retention time for plotting
metaDataTmp$predRtLoess[fileIndx] <- {
{
metaDataTmp$retentionTime[fileIndx] / 60
} - predict(rtDevModels(adductSpectra)[[i]],
newdata =
metaDataTmp$retentionTime[fileIndx] / 60)
} * 60
# min/max deviation
minMaxRtDf[i,] <- c(min(deviationMed), max(deviationMed))
# deviation values
lTmp <- length(rtsFileTmp)
rtDevAllTmp[[i]] <-
cbind(c(rtsFileTmp[seq_len((lTmp - 2))] -
deviationMed[seq_len((lTmp -
2))], rtsFileTmp[(lTmp - 1):lTmp]), deviationMed)
}
if (!is.null(outputFileDir)) {
png(paste0(outputFileDir, "/rtDevPlot.png"))
plot(
rtSeqTmp,
rep(0, length(rtSeqTmp)),
xlim = c(minMaxRt[1], minMaxRt[2]),
ylim = c(min(minMaxRtDf[, 1]), max(minMaxRtDf[, 2])),
xlab = "retentionTime (min)",
ylab = "deviation median retentionTime (min)",
main = paste0(
"retentionTime deviation (n=",
length(wellBehaved),
" groups, max. n=",
nMissing,
" missing files)"
),
type = "l"
)
for (i in seq_len(nFiles)) {
lines(
x = rtSeqTmp,
y = predict(rtDevModels(adductSpectra)[[i]], newdata = rtSeqTmp),
col = i + 1
)
rtDevTmp <- rtDevAllTmp[[i]]
points(rtDevTmp[-c(nrow(rtDevTmp) - 1, nrow(rtDevTmp)),],
col = i + 1, pch = 19)
}
abline(h = rep(0, length(rtSeqTmp)), col = "blue")
if (!is.null(outputFileDir)) {
dev.off()
}
}
# plot adjusted
wellBehavedMeta <-
metaDataTmp[metaDataTmp$interMSMSrtGroups %in%
wellBehaved, , drop = FALSE]
medianRts <- tapply(wellBehavedMeta$predRtLoess,
wellBehavedMeta$interMSMSrtGroups,
median) / 60
minMaxRt <- c(min(metaDataTmp$predRtLoess) / 60,
max(metaDataTmp$predRtLoess) / 60)
rtSeqTmp <- seq(minMaxRt[1], minMaxRt[2], 0.1)
# deviation from loess adjusted median values
message("calculating deviation from loess-adjusted median values.\n")
for (i in seq_len(nFiles)) {
setTxtProgressBar(pb, i)
fileNameTmp <- basename(Specfile.paths(adductSpectra))[i]
fileIndx <- metaDataTmp$mzXMLFile %in% fileNameTmp
fileMetaTmp <- metaDataTmp[fileIndx, , drop = FALSE]
# mean rt each MS/MS rt group
meanRtAll <- tapply(fileMetaTmp$predRtLoess,
as.factor(fileMetaTmp$interMSMSrtGroups),
mean)
indxWellBeTmp <- match(wellBehaved, names(meanRtAll))
indxWellBeTmp <-
indxWellBeTmp[complete.cases(indxWellBeTmp)]
rtsFileTmp <- meanRtAll[indxWellBeTmp] / 60
# deviation of rts from median
deviationMed <- rtsFileTmp - medianRts[complete.cases(match(names(
medianRts), names(rtsFileTmp)))]
deviationMed <-
c(deviationMed, deviationMed[which.min(rtsFileTmp)],
deviationMed[which.max(rtsFileTmp)])
rtsFileTmp <- c(rtsFileTmp, minMaxRt)
# min/max deviation
minMaxRtDf[i,] <- c(min(deviationMed), max(deviationMed))
# deviation values
lTmp <- length(rtsFileTmp)
rtDevAllTmp[[i]] <-
cbind(c(rtsFileTmp[seq_len((lTmp - 2))] -
deviationMed[seq_len((lTmp - 2))], rtsFileTmp[
(lTmp - 1):lTmp]), deviationMed)
}
if (!is.null(outputFileDir)) {
png(paste0(outputFileDir, "/adjRtPlot.png"))
plot(
rtSeqTmp,
rep(0, length(rtSeqTmp)),
xlim = c(minMaxRt[1], minMaxRt[2]),
ylim = c(min(minMaxRtDf[, 1]), max(minMaxRtDf[, 2])),
xlab = "retentionTime (min)",
ylab = "deviation median retentionTime (min)",
main = paste0(
"loess-adjusted retentionTime deviation (n=",
length(wellBehaved),
" groups, max. n=",
nMissing,
" missing files)"
),
type = "l"
)
for (i in seq_len(nFiles)) {
rtDevTmp <- rtDevAllTmp[[i]]
points(rtDevTmp[-c(nrow(rtDevTmp) - 1, nrow(rtDevTmp)),],
col = i + 1, pch = 19)
}
abline(h = rep(0, length(rtSeqTmp)), col = "blue")
if (!is.null(outputFileDir)) {
dev.off()
}
}
return(adductSpectra)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.