R/retentionCorr.R

Defines functions retentionCorr

Documented in retentionCorr

#' loess-based retention time deviation correction
#'
#' @param adductSpectra AdductSpec object
#' @param smoothingSpan numeric. fixed smoothing span, argument to loess.
#' If argument is not supplied then optimal smoothing span is
#' calculated for each file seperately.
#' @param nMissing numeric. maximum number of missing files for a
#' MS/MS scan group to be
#' utilized in the loess retention time deviation model.
#' Roughly 15 percent missing values is a good starting point
#' (e.g. nMissing=10 for 68 samples).
#' @param nExtra numeric maximum number of extra scans above
#' the total number of
#' files for a MS/MS scan group to be utilized in the
#' loess retention time deviation model.
#' If a MS/MS scan group consists of many scans far
#' in excess of the number of files
#' then potentially MS/MS scans from large tailing peaks or
#' isobars may be erroneously
#' grouped together and used to adjust retention time incorrectly.
#' @param folds numeric. number of cross validation steps to
#' perform in identifying
#' optimal smoothing span parameter (see: bisoreg package
#' for more details)
#' @param outputFileDir character full path to a directory
#' to save the output images
#' @usage retentionCorr(adductSpectra = NULL,
#' smoothingSpan = NULL, nMissing = 1,
#' nExtra = 1, folds = 7, outputFileDir = NULL)
#' @return LOESS RT models as adductSpectra AdductSpec object
retentionCorr <- function(adductSpectra = NULL,
                            smoothingSpan = NULL,
                            nMissing = 1,
                            nExtra = 1,
                            folds = 7,
                            outputFileDir = NULL) {
    # error handling
    if (is.null(adductSpectra)) {
        stop("argument adductSpectra is missing with no default.")
    } else if (!is(adductSpectra, 'AdductSpec')) {
        stop("argument adductSpectra is not an AdductSpec class object.")
    }
    metaDataTmp <- metaData(adductSpectra)
    # single point rt drift
    if (!is.null(metaDataTmp$intStdRtDrift)) {
        metaDataTmp$retentionTime <-
            as.numeric(metaDataTmp$retentionTime) +
            (as.numeric(metaDataTmp$intStdRtDrift) * -1)
    } else {
        metaDataTmp$retentionTime <- as.numeric(metaDataTmp$retentionTime)
    }
    nFiles <- length(Specfile.paths(adductSpectra))
    nFilesPerGroup <- tapply(metaDataTmp$mzXMLFile,
                            as.factor(metaDataTmp$interMSMSrtGroups),
                            function(MSMSgroup) {
                                length(unique(MSMSgroup))
                            })[-1]
    wellBehaved <- names(nFilesPerGroup)[which(nFilesPerGroup >=
                                                (nFiles - nMissing))]
    # check n extra
    nExtraScans <- table(metaDataTmp$interMSMSrtGroups)
    nExtraScans <- nExtraScans[nExtraScans < {
        nFiles + nExtra
    }]
    wellBehaved <- wellBehaved[wellBehaved %in% names(nExtraScans)]
    if (length(wellBehaved) == 0) {
        stop(
            "Not enough well behaved MS/MS peak groups for retention
            time correction: consider reducing the value of the nMissing
            parameter and/or increasing the nExtra parameter."
        )
    }
    wellBehavedMeta <-
        metaDataTmp[metaDataTmp$interMSMSrtGroups %in%
                        wellBehaved, , drop = FALSE]
    medianRts <- tapply(wellBehavedMeta$retentionTime,
                        wellBehavedMeta$interMSMSrtGroups,
                        median) / 60
    minMaxRt <- c(min(metaDataTmp$retentionTime) / 60,
                  max(metaDataTmp$retentionTime) / 60)
    rtSeqTmp <- seq(minMaxRt[1], minMaxRt[2], 0.1)
    # plot deviation from RT loess
    rtDevModels(adductSpectra) <- vector("list", nFiles)
    minMaxRtDf <- matrix(0, ncol = 2, nrow = nFiles)
    rtDevAllTmp <- vector("list", nFiles)
    if (!is.null(smoothingSpan)) {
        message(
            "calculating LOESS fit
            (fixed smoothing span: ",
            smoothingSpan,
            ") retention drift (n=",
            length(wellBehaved),
            " well-behaved retention time groups)...\n"
            )
    } else {
        message(
            "calculating LOESS fit (",
            folds,
            "-fold CV)
            retention drift (n=",
            length(wellBehaved),
            " well-behaved retention time groups)...\n"
            )
    }
    metaDataTmp$predRtLoess <- 0
    pb <- txtProgressBar(min = 0,
                        max = nFiles,
                        style = 3)
    for (i in seq_len(nFiles)) {
        setTxtProgressBar(pb, i)
        fileNameTmp <- basename(Specfile.paths(adductSpectra))[i]
        fileIndx <- metaDataTmp$mzXMLFile %in% fileNameTmp
        fileMetaTmp <- metaDataTmp[fileIndx, , drop = FALSE]
        # mean rt each MS/MS rt group
        meanRtAll <- tapply(
            fileMetaTmp$retentionTime,
            as.factor(fileMetaTmp$interMSMSrtGroups),
            mean
        )
        indxWellBeTmp <- match(wellBehaved, names(meanRtAll))
        indxWellBeTmp <-
            indxWellBeTmp[complete.cases(indxWellBeTmp)]
        rtsFileTmp <- meanRtAll[indxWellBeTmp] / 60
        # deviation of rts from median
        deviationMed <- rtsFileTmp - medianRts[complete.cases(match(names(
            medianRts), names(rtsFileTmp)))]
        # add min and max gradient rt drifts to prevent wild predictions at
        #start and finish
        deviationMed <-
            c(deviationMed, deviationMed[which.min(rtsFileTmp)],
            deviationMed[which.max(rtsFileTmp)])
        rtsFileTmp <- c(rtsFileTmp, minMaxRt)
        # loess model retentionTime and retentionTime deviation optimal loess
        # predict(adductSpectra@rtDevModels[[i]], newdata=rtSeqTmp)
        if (!is.null(smoothingSpan)) {
            rtDevModels(adductSpectra)[[i]] <- loess(deviationMed ~ rtsFileTmp,
                                                    span = smoothingSpan,
                                                    surface = "direct")
        } else {
            rtDevModels(adductSpectra)[[i]] <- loessWrapperMod(rtsFileTmp,
                                                            deviationMed, 
                                                            folds = folds)
        }
        # predict retention time for plotting
        metaDataTmp$predRtLoess[fileIndx] <- {
            {
                metaDataTmp$retentionTime[fileIndx] / 60
            } - predict(rtDevModels(adductSpectra)[[i]],
                        newdata =
                            metaDataTmp$retentionTime[fileIndx] / 60)
        } * 60
        # min/max deviation
        minMaxRtDf[i,] <- c(min(deviationMed), max(deviationMed))
        # deviation values
        lTmp <- length(rtsFileTmp)
        rtDevAllTmp[[i]] <-
            cbind(c(rtsFileTmp[seq_len((lTmp - 2))] -
                        deviationMed[seq_len((lTmp -
                        2))], rtsFileTmp[(lTmp - 1):lTmp]), deviationMed)
    }
    if (!is.null(outputFileDir)) {
        png(paste0(outputFileDir, "/rtDevPlot.png"))
    plot(
        rtSeqTmp,
        rep(0, length(rtSeqTmp)),
        xlim = c(minMaxRt[1], minMaxRt[2]),
        ylim = c(min(minMaxRtDf[, 1]), max(minMaxRtDf[, 2])),
        xlab = "retentionTime (min)",
        ylab = "deviation median retentionTime (min)",
        main = paste0(
            "retentionTime deviation (n=",
            length(wellBehaved),
            " groups, max. n=",
            nMissing,
            " missing files)"
        ),
        type = "l"
    )
    for (i in seq_len(nFiles)) {
        lines(
            x = rtSeqTmp,
            y = predict(rtDevModels(adductSpectra)[[i]], newdata = rtSeqTmp),
            col = i + 1
        )
        rtDevTmp <- rtDevAllTmp[[i]]
        points(rtDevTmp[-c(nrow(rtDevTmp) - 1, nrow(rtDevTmp)),],
               col = i + 1, pch = 19)
    }
    abline(h = rep(0, length(rtSeqTmp)), col = "blue")
    if (!is.null(outputFileDir)) {
        dev.off()
    }
}
    # plot adjusted
    wellBehavedMeta <-
        metaDataTmp[metaDataTmp$interMSMSrtGroups %in%
                        wellBehaved, , drop = FALSE]
    medianRts <- tapply(wellBehavedMeta$predRtLoess,
                        wellBehavedMeta$interMSMSrtGroups,
                        median) / 60
    minMaxRt <- c(min(metaDataTmp$predRtLoess) / 60,
                max(metaDataTmp$predRtLoess) / 60)
    rtSeqTmp <- seq(minMaxRt[1], minMaxRt[2], 0.1)
    # deviation from loess adjusted median values
    message("calculating deviation from loess-adjusted median values.\n")
    for (i in seq_len(nFiles)) {
        setTxtProgressBar(pb, i)
        fileNameTmp <- basename(Specfile.paths(adductSpectra))[i]
        fileIndx <- metaDataTmp$mzXMLFile %in% fileNameTmp
        fileMetaTmp <- metaDataTmp[fileIndx, , drop = FALSE]
        # mean rt each MS/MS rt group
        meanRtAll <- tapply(fileMetaTmp$predRtLoess,
                            as.factor(fileMetaTmp$interMSMSrtGroups),
                            mean)
        indxWellBeTmp <- match(wellBehaved, names(meanRtAll))
        indxWellBeTmp <-
            indxWellBeTmp[complete.cases(indxWellBeTmp)]
        rtsFileTmp <- meanRtAll[indxWellBeTmp] / 60
        # deviation of rts from median
        deviationMed <- rtsFileTmp - medianRts[complete.cases(match(names(
            medianRts), names(rtsFileTmp)))]
        deviationMed <-
            c(deviationMed, deviationMed[which.min(rtsFileTmp)],
            deviationMed[which.max(rtsFileTmp)])
        rtsFileTmp <- c(rtsFileTmp, minMaxRt)
        # min/max deviation
        minMaxRtDf[i,] <- c(min(deviationMed), max(deviationMed))
        # deviation values
        lTmp <- length(rtsFileTmp)
        rtDevAllTmp[[i]] <-
            cbind(c(rtsFileTmp[seq_len((lTmp - 2))] -
                        deviationMed[seq_len((lTmp - 2))], rtsFileTmp[
                        (lTmp - 1):lTmp]), deviationMed)
    }
    if (!is.null(outputFileDir)) {
        png(paste0(outputFileDir, "/adjRtPlot.png"))
    plot(
        rtSeqTmp,
        rep(0, length(rtSeqTmp)),
        xlim = c(minMaxRt[1], minMaxRt[2]),
        ylim = c(min(minMaxRtDf[, 1]), max(minMaxRtDf[, 2])),
        xlab = "retentionTime (min)",
        ylab = "deviation median retentionTime (min)",
        main = paste0(
            "loess-adjusted retentionTime deviation (n=",
            length(wellBehaved),
            " groups, max. n=",
            nMissing,
            " missing files)"
        ),
        type = "l"
    )
    for (i in seq_len(nFiles)) {
        rtDevTmp <- rtDevAllTmp[[i]]
        points(rtDevTmp[-c(nrow(rtDevTmp) - 1, nrow(rtDevTmp)),],
               col = i + 1, pch = 19)
    }
    abline(h = rep(0, length(rtSeqTmp)), col = "blue")
    if (!is.null(outputFileDir)) {
        dev.off()
    }
    }
    return(adductSpectra)
    }

Try the adductomicsR package in your browser

Any scripts or data that you put into this service are public.

adductomicsR documentation built on Nov. 8, 2020, 4:49 p.m.