Nothing
adSplit <- function(mydata, annotation.ids, chip.name, min.probes=20, max.probes=NULL,
B=NULL, min.group.size=5, ngenes=50, ignore.genes=5) {
# initialize
if (is(mydata,"ExpressionSet")) mydata <- exprs(mydata)
nsamples <- ncol(mydata)
nprobesets <- nrow(mydata)
if (is.null(max.probes)) max.probes <- round(nrow(mydata)/10, 0)
collected.res <- list(cuts=NULL, scores=NULL, pvalues=NULL)
class(collected.res) <- "splitSet"
# get annotation ids if not provided directly
require(package=paste(chip.name,".db",sep=""), character.only=TRUE)
GOenv <- eval(as.symbol(paste(chip.name, "GO2ALLPROBES", sep="")))
KEGGenv <- eval(as.symbol(paste(chip.name, "PATH2PROBE", sep="")))
chipProebeSets <- length(eval(as.symbol(paste(chip.name, "ACCNUM",sep=""))))
if (chipProebeSets != nprobesets)
stop("Expected ", chipProebeSets, " probe-sets for ", chip.name, ", received ", nprobesets)
if (length(annotation.ids) == 1) {
if (annotation.ids == "GO") {
annotation.ids <- ls(GOenv)
} else {
if (annotation.ids == "KEGG") {
annotation.ids <- paste("KEGG:", Rkeys(KEGGenv), sep="")
} else {
if (annotation.ids == "all")
annotation.ids <- c(ls(GOenv), paste("KEGG:", ls(KEGGenv), sep=""))
}
}
}
for (id in annotation.ids) {
# find probesets
if (id == "all") next
if (length(grep("GO:", id)) == 1) {
probes <- GOenv[[id]]
} else {
if (length(grep("KEGG:", id)) == 1) {
tmp.id <- sub("KEGG:","",id)
probes <- KEGGenv[[tmp.id]]
} else {
stop("'", id, "' is not recognized as GO or KEGG identifier")
}
}
probes <- probes[probes %in% rownames(mydata)]
nprobes <- length(probes)
# compute score for current id
cat("Evaluating identifier", id, "with", nprobes, "probesets...\n")
if (nprobes < min.probes) {
cat(" -> skipped, too few probes associated (", nprobes, ")\n", sep="")
next
}
if (nprobes > max.probes) {
cat(" -> skipped, too many probes associated (", nprobes, ")\n", sep="")
next
}
id.data <- mydata[probes,,drop=FALSE]
res <- diana2means(id.data, min.group.size, ngenes, ignore.genes, return.cut=TRUE)
if (!is.na(res$score)) {
if (!is.null(B)) {
# compute random scores and empirical p-value
rand.scores <- randomDiana2means(nprobes, mydata, chip.name,
B, ngenes, ignore.genes)
res$p <- sum(rand.scores > res$score)/length(rand.scores)
}
# collect results
collected.res$cuts <- rbind(collected.res$cuts, res$cut)
collected.res$scores <- c(collected.res$scores, res$score)
names(collected.res$scores)[length(collected.res$scores)] <- id
if (!is.null(B)) {
collected.res$pvalues <- c(collected.res$pvalues, res$p)
names(collected.res$pvalues)[length(collected.res$pvalues)] <- id
}
rownames(collected.res$cuts)[nrow(collected.res$cuts)] <- id
colnames(collected.res$cuts) <- colnames(mydata)
}
}
# add q-values
if (length(collected.res$pvalues) > 1) {
q <- mt.rawp2adjp(collected.res$pvalues, "BH")
collected.res$qvalues <- q$adjp[,2]
collected.res$cuts <- collected.res$cuts[q$index,]
collected.res$scores <- collected.res$scores[q$index]
collected.res$pvalues <- collected.res$pvalues[q$index]
names(collected.res$qvalues) <- names(collected.res$pvalues)
}
return(collected.res)
}
print.splitSet <- function(x, ...) {
if (is.null(x$cuts)) {
cat("Empty split set\n")
return()
}
if (nrow(x$cuts) > 1) {
cat("Annotation-driven split set \n",
" holds", nrow(x$cuts), "splits on", ncol(x$cuts), "elements\n",
" scores range is:", range(x$scores), "\n")
if (!is.null(x$pvalues)) {
cat(" empirical p-values range is:", range(x$pvalues), "\n")
cat(" q-value range is:", range(x$qvalues), "\n")
} else {
cat(" no empirical p-values computed\n")
}
} else { # just a single split
id <- rownames(x$cuts)
if (length(grep("GO:", id)) == 1) {
term <- attr(GOTERM[[id]],"Term")
} else {
if (length(grep("KEGG:", id)) == 1) {
tmp.id <- sub("KEGG:","",id)
term <- KEGGPATHID2NAME[[tmp.id]]
} else {
stop("'", id, "' is not recognized as GO or KEGG identifier")
}
}
term <- paste(term, " (", id, ")", sep="")
cat("Annotation-driven split set \n",
" holds 1 split on", ncol(x$cuts), "elements\n",
" associated to:", term, "\n",
" object distribution is:", table(x$cuts[1,]), "\n",
" score is:", x$scores, "\n")
if (!is.null(x$pvalues)) {
cat(" empirical p-value is:", x$pvalues, "\n")
} else {
cat(" no empirical p-values computed\n")
}
}
}
hist.splitSet <- function(x, main="Distribution of p-Values", xlab="p-values",
col="grey", xlim=c(0,1), ...) {
mymai <- par("mai")
mymai[4] <- mymai[1]
par(mai=mymai)
h <- hist(x$pvalues, main=main, xlab=xlab, col=col, xlim=xlim, ...)
m <- max(h$counts)
axis(side=4, at=m*seq(0.0, 1.0, 0.2), labels=seq(0.0, 1.0, 0.2))
mtext("q-value", side=4, at=0.5*m, line=3, cex=1.0)
lines(x$pvalues, m*x$qvalues)
}
makeEID2PROBESenv <- function(EIDenv) {
# expects a hash with ENTREZIDs as values and Affy-probes as keys
# generates a hash with ENTREZIDs as keys and Affy-probes as values
env <- new.env(hash=TRUE)
for (affyid in Lkeys(EIDenv)) {
lid <- as.character(EIDenv[[affyid]])
if (!is.null(lid)) assign(lid, affyid, env)
else assign(lid, c(get(lid, env), affyid), env)
}
return(env)
}
drawRandomPS <- function(nps, EID2PSenv, allEIDs){
# nps: number of probe set to draw at random
# chip: name of the chip
drawnEIDs <- sample(allEIDs,nps,replace=FALSE)
drawnpsids <- unlist(mget(as.character(drawnEIDs), EID2PSenv))
return(drawnpsids[1:nps])
} #drawRandomPS
randomDiana2means <- function(nprobes,data,chip,ndraws=10000, ngenes=50,ignore.genes=5){
#nprobes: number of probesets to draw at random
#data: rows=genes, columns=samples
#ndraws: number of random draws
#ngenes: number of genes to compute score on
#ignore.genes: number of genes to disregard for score calculation
cat(" determining", ndraws, "random DLD-scores with",nprobes,
"probe sets each (wait for", round(ndraws/100,0), "dots)\n ")
require(package=paste(chip,".db",sep=""), character.only=TRUE)
randscores <- numeric(ndraws) # initialize
EIDenv <- eval(as.symbol(paste(chip, "ENTREZID", sep="")))
EID2PSenv <- makeEID2PROBESenv(EIDenv)
allEIDs <- ls(EID2PSenv)
for (i in 1:ndraws){
if(i%%100==0) cat(".")
randps <- drawRandomPS(nprobes, EID2PSenv, allEIDs)
# randps <- sample(1:nrow(data), nprobes, replace=FALSE)
randdata <- data[randps,,drop=FALSE]
randscores[i] <- diana2means(randdata, 1, ngenes,
ignore.genes, return.cut=FALSE)
} #for
cat("\n")
randscores[is.na(randscores)] <- 0
return(randscores)
}#randomDiana2means
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.