Nothing
#' Duplication level plot
#'
#' @description bins singletons, doubletons, and higher order clonotypes
#' into a line plot
#'
#' @import ggplot2
#' @include util.R
#'
#' @param files list type. List of strings to _cdr_v_duplication.csv pathname
#' @param sampleNames vector type. Vector of strings each representing
#' sample names
#' @param regions vector type.
#' Which regions to include in the plot. Default = c("CDR3", "V")
#'
#' @return ggplot2 object
.plotDuplication <-
function(files, sampleNames, regions = c("CDR3", "V")) {
nsamples <- length(files)
if (nsamples != length(sampleNames)) {
stop("Expected equal number of sample names and dataframes, got ",
length(sampleNames),
" samples and ",
nsamples, " dataframes.")
}
message("Creating duplication plot for samples ",
paste(sampleNames, collapse = ", "))
# read xticks and xlimits from first 2 row
trimwsNoQuotes <- function(x) {
gsub("'", "", trimws(x))
}
# trimwsNoQuotes strips whitespaces AND single quotes
fp <- file(files[[1]], "r")
xticks <-
strtoi(unlist(lapply(strsplit(
readLines(fp, n = 1), ","
)[[1]],
trimws)))
xlabels <-
unlist(lapply(strsplit(readLines(fp, n = 1), ",")[[1]],
trimwsNoQuotes))
close(fp)
# read files into dataframes
dataframes <- lapply(files, read.csv, skip = 2)
# pre-processing & cleanup
for (i in seq_len(nsamples)) {
df <- dataframes[[i]]
df$sample <- sampleNames[[i]]
dataframes[[i]] <- df[df$region %in% regions,]
}
# combine!
df.union <- do.call("rbind", dataframes)
g <- ggplot(df.union, aes(x = x, y = y))
if (nsamples == 1) {
g <- g + geom_line(aes(linetype = region),
color = BLUEHEX,
size = 0.65) +
guides(color = FALSE)
} else {
g <- g + geom_line(aes(linetype = region, color = sample),
size = 0.65)
}
g <- g +
scale_linetype_manual(values = .getLineTypes(regions)) +
scale_x_continuous(breaks = xticks, labels = xlabels) +
labs(
title = paste(
"Sequence duplication levels of",
paste(regions, collapse = ", "),
"in",
paste(sampleNames, collapse = ", ")
),
x = "Duplication level",
y = "Proportion of duplicated sequences"
) +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
return(g)
}
#' Rarefaction plot
#'
#' @description Plots the number of unique clonotypes (on the y-axis)
#' drawn from a sample size on the x axis. The number of unique clonotypes
#' is averaged over 5 repeated rounds.
#'
#' @import ggplot2
#' @include util.R
#'
#' @param files list type. A list of files consisting of path to samples
#' @param sampleNames vector type. A vector of strings,
#' each being the name of samples in files
#' @param regions vector type. A vector of strings,
#' regions to be included. Defaults to c("CDR3", "V")
#'
#' @return ggplot2 object
.plotRarefaction <-
function(files, sampleNames, regions = c("CDR3", "V")) {
nsamples <- length(files)
# sanity check
if (length(sampleNames) != nsamples) {
stop("Expected equal number of sample names and dataframes, got ",
length(sampleNames),
" samples and ",
nsamples, " dataframes.")
}
message("Creating rarefaction plot for samples ",
paste(sampleNames, collapse = ", "))
# find the minimum xtick value from all the samples to plot as the
# max xtick value on the actual graph (i.e. the graph is truncated to the
# smallest maximum xtick value from the pool of samples)
fp <- file(files[[1]], "r")
xticks <-
strtoi(unlist(lapply(strsplit(
readLines(fp, n = 1), ","
)[[1]],
trimws)))
close(fp)
# if there are more
if (nsamples > 1) {
for (i in 2:nsamples) {
fp <- file(files[[i]], "r")
candidate <- strtoi(unlist(lapply(
strsplit(readLines(fp, n = 1), ",")[[1]], trimws
)))
close(fp)
if (tail(candidate, n = 1) < tail(xticks, n = 1)) {
xticks <- candidate
}
}
}
# read files
dataframes <- lapply(files, read.csv, skip = 1)
# pre-processing & cleaning
for (i in seq_len(nsamples)) {
df <- dataframes[[i]]
df$sample <- sampleNames[[i]]
df <- df[df$region %in% regions,]
dataframes[[i]] <- .summarySE(df,
measurevar = 'y',
groupvars = c('x', 'region', 'sample'))
}
# merge
df.union <- do.call("rbind", dataframes)
# make compound column of region . sample for geom_ribbon
df.union$compound <- paste(df.union$sample, df.union$region)
g <- ggplot(df.union, aes(x = x, y = y))
if (nsamples == 1) {
g <- g + geom_line(aes(linetype = region),
color = BLUEHEX,
size = 0.65) +
guides(color = FALSE)
} else {
g <- g +
geom_line(aes(linetype = region, color = sample), size = 0.65)
}
g <- g +
scale_linetype_manual(values = .getLineTypes(regions)) +
scale_x_continuous(breaks = xticks,
limits = c(head(xticks, n = 1),
tail(xticks, n = 1))) +
geom_ribbon(
aes(
ymin = y - ci,
ymax = y + ci,
fill = compound
),
alpha = 0.1,
show.legend = FALSE
) +
labs(
title = paste(
"Rarefaction of",
paste(regions, collapse = ", "),
"in",
paste(sampleNames, collapse = ", ")
),
subtitle = "Mean number of deduplicated sequences with 95% confidence interval",
x = 'Sample size',
y = "Number of deduplicated sequences"
) +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
return(g)
}
#' Plots capture-recapture
#'
#' @description Plots the percent of recapture clonotypes (on the y-axis)
#' drawn from a repeated (with replacement) sample size on the x axis. The
#' percentage of recaptured clonotypes is averaged over 5 recapture rounds.
#'
#' @import ggplot2
#' @include util.R
#'
#' @param files list type. List of _cdr_v_recapture.csv.gz files.
#' @param sampleNames vector type. A vector of strings each
#' representing the name of samples in files.
#' @param regions vector type. A vector of strings,
#' regions to be included in the plot. defaults to c("CDR3", "V")
#'
#' @return ggplot2 object
.plotRecapture <-
function(files, sampleNames, regions = c("CDR3", "V")) {
nsamples <- length(files)
# sanity check
if (nsamples != length(sampleNames)) {
stop("Expected equal number of sample names and dataframes, got ",
length(sampleNames),
" samples and ",
nsamples, " dataframes.")
}
message("Creating recapture plot for samples ",
paste(sampleNames, collapse = ", "))
# find the minimum xtick value from all the samples to plot as the
# max xtick value on the actual graph (i.e. the graph is truncated to the
# smallest maximum xtick value from the pool of samples)
fp <- file(files[[1]], "r")
xticks <-
strtoi(unlist(lapply(strsplit(
readLines(fp, n = 1), ","
)[[1]],
trimws)))
close(fp)
# if there are more
if (nsamples > 1) {
for (i in 2:nsamples) {
fp <- file(files[[i]], "r")
candidate <- strtoi(unlist(lapply(
strsplit(readLines(fp, n = 1), ",")[[1]], trimws
)))
close(fp)
if (tail(candidate, n = 1) < tail(xticks, n = 1)) {
xticks <- candidate
}
}
}
# read dataframes
dataframes <- lapply(files, read.csv, skip = 1)
# cleanup & pre-processing
for (i in seq_len(nsamples)) {
df <- dataframes[[i]]
# append sample name to a new column named sample
df$sample <- sampleNames[[i]]
# only want selected regions - ignore others
df <- df[df$region %in% regions, ]
# get mean, sd, se, and ci
dataframes[[i]] <- .summarySE(df,
measurevar = 'y',
groupvars = c("x", "region", "sample"))
}
df.union <- do.call("rbind", dataframes)
# make compound column for geom_ribbon (region . sample)
df.union$compound <- paste(df.union$region, df.union$sample)
# plot!
p <- ggplot(df.union, aes(x = x, y = y))
if (nsamples == 1) {
p <- p + geom_line(aes(linetype = region),
color = BLUEHEX,
size = 0.65) +
guides(color = FALSE)
} else {
p <- p +
geom_line(aes(linetype = region, color = sample), size = 0.65)
}
p <- p +
scale_linetype_manual(values = .getLineTypes(regions)) +
scale_x_continuous(breaks = xticks) +
geom_ribbon(
aes(
ymin = y - ci,
ymax = y + ci,
fill = compound
),
alpha = 0.1,
show.legend = FALSE
) +
labs(
title = paste(
"Percent recapture of",
paste(regions, collapse = ", "),
"in",
paste(sampleNames, collapse = ", ")
),
subtitle = "Mean number of recaptured sequences with 95% confidence interval",
x = "Sample size",
y = "Percent Recapture"
) + theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
return(p)
}
#' Title Shows varying regions for a given clonotype defined by its CDR3
#'
#' @import reshape2
#' @import ggplot2
#'
#' @param path string type. Path to diversity folder
#' where <sampleName>_clonotype_diversity_region_analysis.csv.gz is located
#' @param sampleName string type
#' @param top int type. Top N number of clones to analyze
#'
#' @return ggplot2 object
.regionAnalysis <- function(path, sampleName, top = 15) {
message("Starting clonotype region analysis for ", sampleName)
df <- read.csv(
paste0(
path,
sampleName,
"_clonotype_diversity_region_analysis.csv.gz"
),
stringsAsFactors = FALSE
)
headers <- c("fr1", "cdr1", "fr2", "cdr2", "fr3", "fr4")
# sort the df with decreasing counts of CDR3 occurance
df <- df[with(df, order(-count)),]
# add new column to sum the "unique" regions
df$sumcounts = rowSums(df[, headers])
# grab only those whos V-domain will differ.
# This means sumcounts != 6 (> 6) where 6 = length(headers)
df <- df[df$sumcounts > 6,]
# grab top N
df <- head(df, top)
# add new row as reference of "unique regions"
de <- data.frame("REFERENCE", Inf, 1, 1, 1, 1, 1, 1, 6)
names(de) <- names(df)
df <- rbind(df, de)
# reshape to multi-row
df.mel <- melt(df, measure.vars = headers)
df.mel[, "value"] = df.mel[, "value"] / df.mel[, "sumcounts"]
# plot!
g <- ggplot(df.mel,
aes(
x = cdr3,
y = value,
fill = variable,
label = sprintf("%0.2f%%",
round(value * 100, digits = 2))
)) +
geom_bar(stat = 'identity') +
theme(text = element_text(size = 10),
axis.text.x = element_text(angle = 65, hjust = 1)) +
#geom_text(position = position_stack(vjust = 0.5)) +
#stat_summary(fun.y = sum, aes(label = sumcounts, group=cdr3),
# geom='text', vjust=-.2) +
labs(
title = paste(
sampleName,
"varying levels of FRs and CDRs of top",
top,
"CDR3 clonotype"
),
subtitle = "Counts of unique regions for a given CDR3",
x = "CDR3",
y = "Proportion"
) +
guides(fill = guide_legend(title = "Region")) +
scale_x_discrete(limits = c("REFERENCE", head(df, -1)$cdr3))
return(g)
}
#' Composition logo plot
#'
#' @description Plots 2 kinds: scaled and unscaled composition logos
#'
#' @param compositionDirectory string type.
#' @param outdir string type.
#' @param sampleName string type.
#' @param regions logical type. vector of FR/CDR regions to plot
#' @param .save logical type. save ggplot object
#'
#' @import stringr
#'
#' @return none
.aminoAcidPlot <- function(compositionDirectory,
outdir,
sampleName,
regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"),
.save = TRUE) {
for (region in regions) {
dirName <- file.path(compositionDirectory, region)
outputPath <- file.path(outdir, region)
if (!dir.exists(outputPath)) {
dir.create(outputPath)
}
summaryPlot <-
file.path(dirName, paste0(sampleName, "_cumulative_logo.csv"))
df <- read.csv(summaryPlot)
g1 <- .aminoAcidBar(df, scale = FALSE, region)
g2 <- .aminoAcidBar(df, scale = TRUE, region)
fname <-
file.path(outputPath,
paste0(sampleName, "_cumulative_logo.png"))
fnameScaled <-
file.path(outputPath,
paste0(sampleName, "_cumulative_logo_scaled.png"))
ggsave(fname, plot = g1, width = V_WIDTH, height = V_HEIGHT)
ggsave(fnameScaled, plot = g2, width = V_WIDTH, height = V_HEIGHT)
.saveAs(.save, fname, g1)
.saveAs(.save, fnameScaled, g2)
germlineSpecific <-
list.files(
path = dirName,
pattern = paste0(sampleName,
"_.+_cumulative_logo\\.csv(\\.gz)?$"),
full.names = TRUE
)
lapply(germlineSpecific, function(gLogoFile) {
germName <- sub(
"_cumulative_logo\\.csv(\\.gz)?$",
"",
stringr::str_extract(gLogoFile, "IG[HKL][VDJ].*")
)
df <- read.csv(gLogoFile)
g1 <-
.aminoAcidBar(df, scale = FALSE, region, germ = germName)
g2 <-
.aminoAcidBar(df, scale = TRUE, region, germ = germName)
fname <-
file.path(outputPath,
paste0(sampleName, "_", germName, "_cumulative_logo.png"))
fnameScaled <-
file.path(
outputPath,
paste0(
sampleName,
"_",
germName,
"_cumulative_logo_scaled.png"
)
)
ggsave(fname, plot = g1, width = V_WIDTH, height = V_HEIGHT)
ggsave( fnameScaled, plot = g2, width = V_WIDTH, height = V_HEIGHT)
.saveAs(.save, fname, g1)
.saveAs(.save, fnameScaled, g2)
})
}
}
#' Plots amino acid composition logo
#'
#' @import ggplot2 stats
#'
#' @param df dataframe
#' @param scale logical. scale to proportion?
#' @param region string. which region is this
#' @param germ string. V germline family
#'
#' @return ggplot2 object
.aminoAcidBar <- function(df, scale, region, germ = "") {
# oranges(G - T), greens(C - W), purples (N - H), reds (D, E), blues (K, R)
group.colors <-
c(
G = "#e65c00",
A = "#ff751a",
S = "#ff8533",
T = "#ff944d",
C = "#003300",
V = "#145214",
I = "#006622",
L = "#1f7a1f",
P = "#009933",
F = "#29a329",
Y = "#00b33c",
M = "#2eb82e",
W = "#33cc33",
N = "#330066",
Q = "#4d0099",
H = "#6600cc",
D = "#990000",
E = "#b30000",
K = "#000099",
R = "#0000cc"
)
df.agg <- aggregate(count ~ position, df, sum)
# get the max counts for each position - then xlabel will contain
# the amino acid character for that position - break ties on first occurance
df.max <- merge(aggregate(count ~ position, df, max), df)
df.max <- df.max[!duplicated(df.max[c(1, 2)]),]
xlabels <-
lapply(df.max[with(df.max, order(position)),]$aa, as.character)
total <- max(df.agg$count)
if (scale) {
df$proportion <- df$count / total
subs <- "Scaled to proportion"
} else {
df.tmp <- merge(df, df.agg, by = "position")
df.tmp <- df.tmp[with(df.tmp, order(position)),]
# if not scaled, divide within its own position rather than
# overall (i.e. the max)
df$proportion <- df.tmp$count.x / df.tmp$count.y
subs <- ""
}
df$aa <-
factor(
df$aa,
levels = c(
"G",
"A",
"S",
"T",
"C",
"V",
"I",
"L",
"P",
"F",
"Y",
"M",
"W",
"N",
"Q",
"H",
"D",
"E",
"K",
"R"
)
)
g <- ggplot(df, aes(x = position, y = proportion)) +
geom_bar(stat = "identity", aes(fill = aa)) +
labs(
title = paste0(germ, " ", region, " (", total, ")"),
subtitle = subs,
x = "amino acid",
y = "proportion"
) +
scale_x_continuous(breaks = df.agg$position, labels = xlabels) +
scale_fill_manual(values = group.colors, drop = FALSE) +
theme(legend.title = element_blank(),
legend.text = element_text(size = 5))
return(g)
}
## dataframe is something like:
## +--------------------------+
## | Clonotype | Count | prop |
## +--------------------------+
## | | | |
## | | | |
## | | | |
## | ....... | ... | .... |
## +--------------------------+
#' Reports abundance-based (Lower bound) diversity estimates using the Vegan package
#'
#' @import vegan
#'
#' @param df clonotype dataframe. Vegan format:
#' +---------------------------+
#' | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column)
#' +---------------------------+
#' | v1 |v2 | v3 | .... | (each species' count values are placed in the corresponding column)
#' +---------------------------+
#'
#' @return dataframe with the format:
#' +----------------------------------------------------------------+
#' | S.obs | S.chao1 | se.chao1 | S.ACE | se.ACE | s.jack1 | s.jack2|
#' +----------------------------------------------------------------+
#' | v1 | v2 .... |
#' +----------------------------------------------------------------+
.reportLBE <- function(df) {
f1.f2 <- unlist(lapply(seq_len(2), function(i) {
sum(df[1,] == i)
}))
lbe <- estimateR(df)
s.obs <- lbe[1]
s.jack1 <- s.obs + f1.f2[1]
s.jack2 <- s.obs + 2 * f1.f2[1] - f1.f2[2]
lbe <-
rbind(as.data.frame(lbe),
S.jack1 = s.jack1,
S.jack2 = s.jack2)
df.out <- as.data.frame(t(lbe[, 1]))
names(df.out) <- rownames(lbe)
return(df.out)
}
#' Calculates the "standard" diversity indices
#'
#' @import vegan
#'
#' @param df clonotype dataframe. Vegan format:
#' +---------------------------+
#' | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column)
#' +---------------------------+
#' | v1 |v2 | v3 | .... | (each species' count values are placed in the corresponding column)
#' +---------------------------+
#'
#' @return dataframe with the column headers:
#' shannon , simpson.con , simpson.inv , simpson.gini , renyi.0 ,
#' renyi.1 , renyi.2 , renyi.Inf , hill.0 , hill.1 , hill.2 , hill.Inf
#'
#' renyi.0 => species richness
#' renyi.1 => shannon entropy
#' renyi.2 => inv.gini
#' renyi.Inf => min.entropy
#'
#' finally:
#' hill_a = exp(renyi_a)
#'
.calculateDInd <- function(df) {
renyi.scales = c(0, 1, 2, Inf)
renyi <- renyi(df, scales = renyi.scales)
hill <- exp(renyi)
shannon <- vegan::diversity(df, index = "shannon")
simpson <- vegan::diversity(df, index = "simpson")
n.species <- ncol(df)
as.data.frame(
cbind(
shannon = shannon,
shannon.norm = shannon / log(n.species),
simpson.gini = simpson,
simpson.inv = vegan::diversity(df, index = "invsimpson"),
simpson.con = 1 - simpson,
renyi.0 = renyi['0'],
renyi.1 = renyi['1'],
renyi.2 = renyi['2'],
renyi.Inf = renyi['Inf'],
hill.0 = hill['0'],
hill.1 = hill['1'],
hill.2 = hill['2'],
hill.Inf = hill['Inf']
)
)
}
#' Title Diversity analysis
#'
#' @import ggplot2
#' @include util.R
#' @include distributions.R
#'
#' @param diversityDirectories list type. List of directories to diversity dir
#' @param diversityOut string type. Output directory
#' @param sampleNames vector type. 1-1 with diversityDirectories
#' @param mashedNames string type. Prefix for output files using "mashed-up"
#' sample names
#' @param .save logical type. Save ggplot object?
#'
#' @return None
.diversityAnalysis <- function(diversityDirectories,
diversityOut,
sampleNames,
mashedNames,
.save = TRUE) {
message("Starting diversity analysis on samples ",
paste(sampleNames, collapse = ", "))
# fr/cdr plots --------------------------------------------------------
# plot duplication, rarefaction, recapture
lapply(c("cdr", "cdr_v", "fr"), function(region) {
.plotDiversityCurves(region, diversityDirectories,
sampleNames, mashedNames,
diversityOut, .save = .save)
})
# generate FR1-4, CDR1-3, CDR3 no outliers, and V spectratypes -------
.generateAllSpectratypes(diversityDirectories,
diversityOut,
sampleNames,
mashedNames,
.save = .save)
# generate composition logos -----------------------------------------
# not applicable to multi-sample scenario
if (length(sampleNames) == 1) {
compDir <- file.path(diversityDirectories[[1]], "composition_logos")
compOut <- file.path(diversityOut, "composition_logos")
if (!file.exists(compOut)) {
dir.create(compOut)
}
message("Plotting composition logos on samples ",
paste(sampleNames, collapse = ", "))
.aminoAcidPlot(compDir, compOut, sampleNames[1])
}
# we can plot region analysis if there's only one sample
# this feature is disabled until the backend has been optimized
#if (length(sampleNames) == 1) {
# # default = top 15
# g <- .regionAnalysis(diversityOut, sampleNames[1])
# ggsave(paste0(diversityOut, mashedNames, "_region_analysis.png"),
# plot = g, width = V_WIDTH, height = V_HEIGHT)
#}
# Calculate Lower Bound Estimate and diversity indices --------------------
.calculateDiversityEstimates(diversityDirectories,
diversityOut,
sampleNames)
}
#' Plots rarefaction, recapture, and de-dup plots for specified \code{region}
#'
#' @import ggplot2
#' @include util.R
#' @include distributions.R
#'
#' @param region string type. One of: "cdr", "cdr_v", and "fr". "cdr" means
#' CDR1-3, "cdr_v" means CDR3 and V only, and finally "fr" means FR1-4.
#' @param diversityDirectories list type. List of directories to diversity dir
#' @param sampleNames vector type. 1-1 with diversityDirectories
#' @param mashedNames string type. Prefix for output files using "mashed-up"
#' @param diversityOut string type. Output directory sample names
#' @param .save logical type. Save ggplot object?
#'
#' @return Nothing
.plotDiversityCurves <- function(region,
diversityDirectories,
sampleNames,
mashedNames,
diversityOut,
.save = TRUE) {
if (region == "cdr") {
includedRegions <- c("CDR1", "CDR2", "CDR3")
} else if (region == "cdr_v") {
includedRegions <- c("CDR3", "V")
} else {
includedRegions <- c("FR1", "FR2", "FR3")
}
plotTypes <- c("duplication" = .plotDuplication,
"rarefaction" = .plotRarefaction,
"recapture" = .plotRecapture)
lapply(seq_along(plotTypes), function(i) {
functor <- plotTypes[[i]]
ptype <- names(plotTypes)[[i]]
searchFiles <-
.listFilesInOrder(path = diversityDirectories,
pattern = paste0(".*_", region,
"_", ptype, "\\.csv(\\.gz)?$"))
if (length(searchFiles) > 0) {
g <- functor(searchFiles, sampleNames, includedRegions)
saveName <-
file.path(diversityOut,
paste0(mashedNames, "_", region, "_", ptype, ".png"))
ggsave(saveName,
plot = g,
width = V_WIDTH,
height = V_HEIGHT)
.saveAs(.save, saveName, g)
} else {
warning("Could not find ", ptype, " files in ",
paste(diversityDirectories, collapse = ", "))
}
})
}
#' Generates all FR/CDR spectratypes
#'
#' @import ggplot2
#' @include util.R
#' @include distributions.R
#'
#' @param diversityDirectories list type. List of directories to diversity dir
#' @param diversityOut string type. Output directory
#' @param sampleNames vector type. 1-1 with diversityDirectories
#' @param mashedNames string type. Prefix for output files using "mashed-up"
#' sample names
#' @param .save logical type. Save ggplot object?
#'
#' @return Nothing
.generateAllSpectratypes <- function(diversityDirectories,
diversityOut,
sampleNames,
mashedNames,
.save = TRUE) {
specOut <- file.path(diversityOut, "spectratypes")
if (!file.exists(specOut)) {
dir.create(specOut)
}
message("Plotting spectratypes on samples ",
paste(sampleNames, collapse = ", "))
regionTypes <- list("cdr" = seq_len(3), "fr" = seq_len(4))
lapply(seq_along(regionTypes), function(i) {
# grab the region (CDR/FR)
region <- names(regionTypes)[[i]]
# for CDR, 1-3, else 1-4
lapply(regionTypes[[i]], function(j) {
specFiles <-
.listFilesInOrder(path = diversityDirectories,
pattern = paste0(".*_",
region,
j,
"_spectratype\\.csv(\\.gz)?$"))
if (length(specFiles) > 0) {
g <- .plotSpectratype(lapply(specFiles, read.csv,
stringsAsFactors = FALSE),
sampleNames,
paste0(toupper(region), j))
saveName <- file.path(specOut,
paste0(mashedNames,
"_",
region,
j,
"_spectratype.png"))
ggsave(saveName,plot = g, width = V_WIDTH, height = V_HEIGHT)
.saveAs(.save, saveName, g)
} else {
warning("Could not find ",
region, j, " spectratype files in ",
paste(diversityDirectories, collapse = ", "))
}
})
})
# special case, no outliers plot for CDR3 only
specFiles <-
.listFilesInOrder(path = diversityDirectories,
pattern = ".*_cdr3_spectratype_no_outliers\\.csv(\\.gz)?$")
if (length(specFiles) > 0) {
g <-
.plotSpectratype(lapply(specFiles, read.csv, stringsAsFactors = FALSE),
sampleNames,
"CDR3")
saveName <-
file.path(specOut,
paste0(mashedNames, "_cdr3_spectratype_no_outliers.png"))
ggsave(saveName, plot = g, width = V_WIDTH, height = V_HEIGHT)
.saveAs(.save, saveName, g)
} else {
warning("Could not find CDR3 spectratype (no outlier) files in ",
paste(diversityDirectories, collapse = ", "))
}
# entire V-domain
specFiles <- .listFilesInOrder(path = diversityDirectories,
pattern = ".*_v_spectratype\\.csv(\\.gz)?$")
if (length(specFiles) > 0) {
g <-
.plotSpectratype(
lapply(specFiles, read.csv, stringsAsFactors = FALSE),
sampleNames,
"V domain")
saveName <-
file.path(specOut, paste0(mashedNames, "_v_spectratype.png"))
ggsave(saveName, plot = g, width = V_WIDTH, height = V_HEIGHT)
.saveAs(.save, saveName, g)
} else {
warning("Cound not find V spectratype files in ",
paste(diversityDirectories, collapse = ", "))
}
}
#' Calculates Lower Bound Estimates for unseen species and Common Diversity
#' Indices from clonotype tables
#'
#' @description Employ common techniques to calculate LBE for unseen species
#' and commonly used diversity indices
#'
#' @import tools
#' @include util.R
#' @include distributions.R
#'
#' @param diversityDirectories list type. List of directories to diversity dir
#' @param diversityOut string type. Output directory
#' @param sampleNames vector type. 1-1 with diversityDirectories sample names
#'
#' @return None
.calculateDiversityEstimates <- function(diversityDirectories,
diversityOut,
sampleNames) {
cdr3ClonesFile <- .listFilesInOrder(path = diversityDirectories,
pattern = ".*_cdr3_clonotypes_.*_over\\.csv(\\.gz)?$")
if (length(cdr3ClonesFile) != length(sampleNames)) {
warning(paste(sampleNames, collapse = ", "),
" is missing CDR3 clonotype counts file, ",
"skipping LBE and IND analysis.")
return()
}
# dataframes is in vegan input format, the clonotypes are
# now column headers instead of column values
dataframes <- lapply(cdr3ClonesFile, function(fname) {
df <- read.csv(fname, stringsAsFactors = FALSE)
d.trans <- as.data.frame(t(df[, "Count"]))
return(d.trans)
})
lb.fname <- "lower_bound_estimate.tsv"
ind.fname <- "diversity_indices.tsv"
estimateTypes <- list(.reportLBE, .calculateDInd)
names(estimateTypes) <- c(lb.fname, ind.fname)
outputFiles <- c(file.path(diversityOut, lb.fname),
file.path(diversityOut, ind.fname))
lapply(seq_along(estimateTypes), function(i) {
if (!file.exists(outputFiles[[i]])) {
fileName <- names(estimateTypes)[[i]]
fileNameSansExt <- tools::file_path_sans_ext(fileName)
functor <- estimateTypes[[i]]
files <-
.listFilesInOrder(path = diversityDirectories,
pattern = paste0(fileNameSansExt,
"\\.tsv(\\.gz)?$"))
if (length(files) != length(sampleNames)) {
# if even one of the tsv file doesn't exist
# (which means we haven't generated it, or if it was deleted,
# we re-generate them)
message("Calculating ",
sub("_", " ", fileNameSansExt, fixed = TRUE),
" for ",
paste(sampleNames, collapse = ", "))
df.ests <- lapply(dataframes, functor)
} else {
# the rare occasion when all individual samples have already been
# analyzed and the TSVs are all available, we only need to reload
# them rather than re-computing the values
message("Loading precomputed ",
sub("_", " ", fileNameSansExt, fixed = TRUE),
" from ",
paste(sampleNames, collapse = ", "))
df.ests <- lapply(files, read.table, header = TRUE)
}
stopifnot(length(diversityDirectories) == length(sampleNames) &&
length(df.ests) == length(sampleNames))
dfs <- do.call("rbind", Map(cbind, df.ests, sample = sampleNames))
write.table(dfs, file = outputFiles[[i]],
sep = "\t", quote = FALSE,
row.names = FALSE)
} else {
message("Found ", names(estimateTypes)[[i]], ", skipping ...")
}
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.