Nothing
# Copyright © 2014-2019 The YAPSA package contributors
# This file is part of the YAPSA package. The YAPSA package is licenced under
# GPL-3
#' Data for mutational signatures
#'
#' The numerical data of the mutational signatures published initially by
#' Alexandrov et al. (Nature 2013) and Alexandrov et al., (Bioaxiv 2018) is
#' stored in data frames with endings \code{_sig_df}, the associated
#' meta-information is stored in data frames with endings \code{_sigInd_df}.
#' There are several instances of \code{_sig_df} and \code{_sigInd_df},
#' corresponding to results and data obtained at different times and with
#' different raw data. There always is a one-to-one correspondence between
#' a \code{_sig_df} and a \code{_sigInd_df}. The data frames of type
#' \code{_sig_df} have as many rows as there are features, i.e. 96 if
#' analyzing mutational signatures of SNVs in a triplet context, and as
#' many columns as there are signatures.
#' Data frames of type \code{_sigInd_df} have as many rows as there are
#' signatures in the corresponding \code{_sig_df} and several columns:
#' \itemize{
#' \item \code{sig}: signature name
#' \item \code{index}: corresponding to the row index of the signature
#' \item \code{colour}: colour for visualization in stacked barplots
#' \item \code{process}: asserted biological process
#' \item \code{cat.coarse}: categorization of the signatures according
#' to the asserted biological processes at low level of detail
#' \item \code{cat.medium}: categorization of the signatures according
#' to the asserted biological processes at intermediate level of detail
#' \item \code{cat.high}: categorization of the signatures according
#' to the asserted biological processes at high level of detail
#' \item \code{cat.putative}: categorization of the signatures according
#' to the asserted biological processes based on clustering and inference
#' }
#' Please note, that categorization columns are only present for the data
#' frames corrosponding to the data from Alexandorv et al. (Nature 2013).
#'
#' @docType data
#' @name sigs
#' @usage data(sigs)
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#' @references Alexandrov et al. (Nature 2013)
#'
NULL
#' @docType data
#' @name sigs_pcawg
#' @usage data(sigs_pcawg)
#' @author Lea Jopp-Saile \email{huebschmann.daniel@@googlemail.com}
#' @references Alexandrov et al. (Biorxiv 2018)
#'
NULL
#' Data for initial sigs, including artifacts
#'
#' \code{AlexInitialArtif_sig_df}: Data frame of the signatures published
#' initially by Alexandrov et al.
#' (Nature 2013). There are 27 signatures which constitute the columns, 22 of
#' which were validated by an orhtogonal sequencing technology. These 22 are in
#' the first 22 columns of the data frame. The column names are \emph{A} pasted
#' to the number of the signature, e.g. \emph{A5}. The nonvalidated signatures
#' have an additional letter in their naming convention: either
#' \emph{AR1} - \emph{AR3} or \emph{AU1} - \emph{AU2}. The rownames are the
#' features, i.e. an encoding of the nucleotide exchanges in their
#' trinucleotide context, e.g. \emph{C>A ACA}. In total there are 96 different
#' features and therefore 96 rows when dealing with a trinucleotide context.
#'
#' @source \code{AlexInitial}: \url{ftp://ftp.sanger.ac.uk/pub/cancer/
#' AlexandrovEtAl/signatures.txt}
#' @name AlexInitialArtif_sig_df
#' @rdname sigs
#'
NULL
#' Meta-info for initial sigs, including artifacts
#'
#' \code{AlexInitialArtif_sigInd_df}: Meta-information for
#' \code{AlexInitialArtif_sig_df}
#'
#' @name AlexInitialArtif_sigInd_df
#' @rdname sigs
#'
NULL
#' Data for initial sigs, only validated
#'
#' \code{AlexInitialValid_sig_df}: Data frame of only the validated signatures
#' published initially by Alexandrov et al. (Nature 2013), corresponding to the
#' first 22 columns of \code{AlexInitialArtif_sig_df}
#'
#' @name AlexInitialValid_sig_df
#' @rdname sigs
#'
NULL
#' Meta-info for initial sigs, only validated
#'
#' \code{AlexInitialValid_sigInd_df}: Meta-information for
#' \code{AlexInitialValid_sig_df}
#'
#' @name AlexInitialValid_sigInd_df
#' @rdname sigs
#'
NULL
#' Data for Cosmic sigs, only validated
#'
#' \code{AlexCosmicValid_sig_df}: Data frame of the updated signatures list
#' maintained by Ludmil Alexandrov at
#' \url{http://cancer.sanger.ac.uk/cosmic/signatures}. The column names are
#' \emph{AC} pasted to the number of the signature, e.g. \emph{AC5}. The naming
#' convention for the rows is as described for
#' \code{\link{AlexInitialArtif_sig_df}}.
#'
#' @source \code{AlexCosmic}: \url{http://cancer.sanger.ac.uk/cancergenome/
#' assets/signatures_probabilities.txt}
#' @name AlexCosmicValid_sig_df
#' @rdname sigs
#'
NULL
#' Meta-info for Cosmic sigs, only validated
#'
#' \code{AlexCosmicValid_sigInd_df}: Meta-information for
#' \code{AlexCosmicValid_sig_df}
#'
#' @name AlexCosmicValid_sigInd_df
#' @rdname sigs
#'
NULL
#' Data for Cosmic sigs, including artifacts
#'
#' \code{AlexCosmicArtif_sig_df}: Data frame of the updated signatures list
#' maintained by Ludmil Alexandrov at
#' \url{http://cancer.sanger.ac.uk/cosmic/signatures} and complemented by the
#' artifact signatures from the initial publication, i.e. the last 5 columns of
#' \code{\link{AlexInitialArtif_sig_df}}. The column names are \emph{AC} pasted
#' to the number of the signature, e.g. \emph{AC5}. The naming convention for
#' the rows is as described for \code{\link{AlexInitialArtif_sig_df}}.
#'
#' @name AlexCosmicArtif_sig_df
#' @rdname sigs
#'
NULL
#' Meta-info for Cosmic sigs, including artifacts
#'
#' \code{AlexCosmicArtif_sigInd_df}: Meta-information for
#' \code{AlexCosmicArtif_sig_df}
#'
#' @name AlexCosmicArtif_sigInd_df
#' @rdname sigs
#'
NULL
#' Data for PCAWG SNV signatures (COSMIC v3), including artifacts
#'
#' \code{PCAWG_SP_SBS_sigs_Artif_df}: Data frame of the signatures published
#' by Alexandrov et al. (Biorxiv 2013) which were decomposed with the
#' method SigProfiler. SNV signatures are labeled with SBS, single base
#' signature. There are 67 signatures which constitute the columns, 47 of
#' which were validated by a bayesian NFM mehtod, SignatureAnayzer. Validated
#' signatures are SBS1-SBS26,SBS28-SBS42 and SBS44. SBS7 is split up into
#' 7 a/b/c and d. SBS10 ans SBS17 are both split up into a and b. Resulting in
#' a 47 validated sigantures. Please note, unlike the paper by Alexandrov et al.
#' (Biorxiv 2018) the data sets do not contain a SBS84 and SBS85 as not all
#' were availiablt to perfom supervised signature analysis. In total there are
#' 96 different features and therefore 96 rows when dealing with a trinucleotide
#'context.
#'
#' @source \code{PCAWG_SNV}: \url{https://www.synapse.org/#!Synapse:syn11738319}
#' @name PCAWG_SP_SBS_sigs_Artif_df
#' @rdname sigs_pcawg
#'
NULL
#' Meta-info for PCAWG SNV signatures, including artifacts
#'
#' \code{PCAWG_SP_SBS_sigInd_Artif_df}: Meta-information for
#' \code{PCAWG_SP_SBS_sigs_Artif_df}
#'
#' @name PCAWG_SP_SBS_sigInd_Artif_df
#' @rdname sigs_pcawg
#'
NULL
#' Data for PCAWG SNV signatures (COSMIC v3), only validated
#'
#' \code{PCAWG_SP_SBS_sigs_Real_df}: Data frame of only the validated
#' signatures published by Alexandrov et al. (Biorxiv 2018), corresponding
#' to the column 1-26, 28-42 and 44 of the \code{PCAWG_SP_SBS_sigs_Artif_df}
#' data frame
#'
#' @name PCAWG_SP_SBS_sigs_Real_df
#' @rdname sigs_pcawg
#'
NULL
#' Meta-info for PCAWG SNV signatures, only validated
#'
#' \code{PCAWG_SP_SBS_sigInd_Real_df}: Meta-information for
#' \code{PCAWG_SP_SBS_sigs_Real_df}
#'
#' @name PCAWG_SP_SBS_sigInd_Real_df
#' @rdname sigs_pcawg
#'
NULL
#' Data for PCAWG Indel signatures (COSMIC v3)
#'
#' \code{PCAWG_SP_ID_sigs_df}: Data frame with Indel signatures published by
#' Alexandrov et al. (Biorxiv 2018) which were decomposed with the method
#' SigProfiler. There are 17 Sigantures reported but as supervised signatures
#' are only valid for whole genome sequencing data analysis. In whole genome
#' sequencing data the Indel signature ID15 was not discribed and thus is not
#' part of this data set. In total 83 features are described. The categorization
#' consideres the size of the insertion and delition, the motif, and the
#' sequence context. Hereby the number of repetition or patial repetition of the
#' motif is determined.
#'
#' @source \code{PCAWG_INDEL}: \url{https://cancer.sanger.ac.uk/cosmic/
#' signatures/ID}
#' @name PCAWG_SP_ID_sigs_df
#' @rdname sigs_pcawg
#'
NULL
#' Meta-info for PCAWG Indel signatures
#'
#' \code{PCAWG_SP_ID_sigInd_df}: Meta-information for
#' \code{PCAWG_SP_ID_sigs_df}
#'
#' @name PCAWG_SP_ID_sigInd_df
#' @rdname sigs_pcawg
#'
NULL
#' Test and example data
#'
#' Data structures used in examples, SNV tests and the SNV signature vignette
#' of the YAPSA package.
#'
#' @docType data
#' @name exampleYAPSA
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#' @references \url{http://www.ncbi.nlm.nih.gov/pubmed/23945592}
#'
NULL
#' Data structures used in examples, Indel tests and the Indel signature
#' vignette of the YAPSA package.
#'
#' @docType data
#' @name exampleINDEL_YAPSA
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#' @references \url{http://www.ncbi.nlm.nih.gov/pubmed/23945592}
#'
NULL
#' Subgroup information for some samples in the vignette
#'
#' \code{lymphoma_PID_df}: A data frame carrying subgroup information for a
#' subcohort of samples used in the vignette. Data in the vignette is
#' downloaded from
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
#' Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#' In the file available under that link somatic point mutation calls from
#' several samples are listed in a vcf-like format. One column encodes the
#' sample the variant was found in. In the vignette we want to restrict the
#' analysis to only a fraction of these involved samples. The data frame
#' \code{lymphoma_PID_df} carries the sample identifiers (PID) as rownames and
#' the attributed subgroup in a column called \code{subgroup}.
#'
#' @name lymphoma_PID_df
#' @usage data(lymphoma_PID)
#' @rdname exampleYAPSA
#'
NULL
#' Test data for complex functions
#'
#' \code{lymphoma_test_df}: A data frame carrying point mutation calls. It
#' represents a subset of the data stored in
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
#' Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#' In the file available under that link somatic point mutation calls from
#' several samples are listed in a vcf-like format. One column encodes the
#' sample the variant was found in. The data frame \code{lymphoma_test_df} has
#' only the variants occuring in the sample identifiers (PIDs) 4112512, 4194218
#' and 4121361.
#'
#' @name lymphoma_test_df
#' @usage data(lymphoma_test)
#' @rdname exampleYAPSA
#'
#' @examples
#' data(lymphoma_test)
#' head(lymphoma_test_df)
#' dim(lymphoma_test_df)
#' table(lymphoma_test_df$PID)
#'
NULL
#' Example data for the vignette
#'
#' \code{lymphoma_Nature2013_raw_df}: A data frame carrying point mutation
#' calls. It represents a subset of the data stored in
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
#' Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#' In the file available under that link somatic point mutation calls from
#' several samples are listed in a vcf-like format. One column encodes the
#' sample the variant was found in.
#'
#' @name lymphoma_Nature2013_raw_df
#' @usage data(lymphoma_Nature2013_raw)
#' @rdname exampleYAPSA
#'
#' @examples
#' data(lymphoma_Nature2013_raw)
#' head(lymphoma_Nature2013_raw_df)
#' dim(lymphoma_Nature2013_raw_df)
#'
NULL
#' Example data for the Indel vignette
#'
#' \code{GenomeOfNl_raw}: A data frame contains the gemiline varinats of
#' the dutch population. carrying point mutation
#' calls. It represents a subset of the data stored in
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/
#' somatic_mutation_data/Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#' In the file available under that link somatic point mutation calls from
#' several samples are listed in a vcf-like format. One column encodes the
#' sample the variant was found in.
#'
#' @name GenomeOfNl_raw
#' @usage data(GenomeOfNl_raw)
#' @references release version 5 \url{http://www.nlgenome.nl/?page_id=9}
#' @return A data frame in a vcf-like format
#'
#' @examples
#' data(GenomeOfNl_raw)
#' head(GenomeOfNl_raw)
#' dim(GenomeOfNl_raw)
#'
NULL
#' Example mutational catalog for the SNV vignette
#'
#' \code{lymphomaNature2013_mutCat_df}: A data frame in the format of a SNV mutation catalog.
#' The mutational catalog contains SNV variants from the
#' \code{lymphoma_Nature2013_raw_df} data. Mutational catalog was created with
#' \code{create_mutation_catalogue_from_df} function.
#'
#' @name lymphomaNature2013_mutCat_df
#' @usage data(lymphomaNature2013_mutCat_df)
#' @references paste0("ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/",
#' "somatic_mutation_data/Lymphoma B-cell/",
#' "Lymphoma B-cell_clean_somatic_mutations_",
#' "for_signature_analysis.txt")
#' @return A data fame in the layout of a SNV mutational catalog
#'
#' @examples
#' data(lymphomaNature2013_mutCat_df)
#' head(lymphomaNature2013_mutCat_df)
#' dim(lymphomaNature2013_mutCat_df)
#'
NULL
#' Example mutational catalog for the exome vignette
#'
#' \code{exome_mutCatRaw_df}: A data frame in the format of a SNV mutation
#' catalog. The mutational catalog contains SNV variants from a cohort of
#' small-cell lung cancer published by Rudin et al. (Nature Genetics 2012)
#' which was later used in the de novo discovery analysis of mutational
#' signatures in human cancer by Alexandrov et al. (Nature 2013).
#'
#' @name exome_mutCatRaw_df
#' @usage data(smallCellLungCancerMutCat_NatureGenetics2012)
#' @references \url{https://www.nature.com/articles/ng.2405}
#' @return A data fame in the layout of a SNV mutational catalog
#'
#' @examples
#' data(smallCellLungCancerMutCat_NatureGenetics2012)
#' head(exome_mutCatRaw_df)
#' dim(exome_mutCatRaw_df)
#'
NULL
#' Example mutational catalog for the Indel vignette
#'
#' \code{MutCat_indel_df}: A data frame in the format of a mutation catalog.
#' The mutational catalog contains Indel variants from the
#' \code{GenomeOfNl_raw} data. Variants were random sampled for 15 artificial
#' patient for the purpose to have a Indel mutational catalog and have to
#' show the functionality of the package. The results of the mutational
#' catalog should not be interpreted fot they biological relevance.
#' Mutational catalog was created with
#' \code{create_indel_mutation_catalogue_from_df} function.
#'
#' @name MutCat_indel_df
#' @usage data(GenomeOfNl_MutCat)
#' @references Mutational catalog created form release version 5 of the Genome
#' of NL
#' \url{http://www.nlgenome.nl/?page_id=9}
#' @return A data fame in the layout of a Indel mutational catalog
#'
#' @examples
#' data(GenomeOfNl_MutCat)
#' head(MutCat_indel_df)
#' dim(MutCat_indel_df)
#'
NULL
#' Test exposures for plot functions
#'
#' \code{lymphoma_Nature2013_COSMIC_cutoff_exposures_df}: Data frame with
#' exposures for testing the plot functions. Data taken from
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
#' Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#'
#' @name lymphoma_Nature2013_COSMIC_cutoff_exposures_df
#' @usage data(lymphoma_cohort_LCD_results)
#' @rdname exampleYAPSA
#'
NULL
#' Test normalized exposures for plot functions
#'
#' \code{rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df}: Data frame with
#' normalized or relative exposures for testing the plot functions. Data taken
#' from
#' \url{ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
#' Lymphoma B-cell/
#' Lymphoma B-cell_clean_somatic_mutations_for_signature_analysis.txt}.
#'
#' @name rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df
#' @usage data(lymphoma_cohort_LCD_results)
#' @rdname exampleYAPSA
#'
NULL
#' Subgroup information for test data for plot functions
#'
#' \code{COSMIC_subgroups_df}: Subgroup information for the data stored in
#' \code{\link{lymphoma_Nature2013_COSMIC_cutoff_exposures_df}} and
#' \code{\link{rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df}}.
#'
#' @name COSMIC_subgroups_df
#' @usage data(lymphoma_cohort_LCD_results)
#' @rdname exampleYAPSA
#'
NULL
#' Sigs info (initial, including artifacts) for test data for plot functions
#'
#' \code{chosen_AlexInitialArtif_sigInd_df}: Signature information for the
#' data stored in
#' \code{\link{lymphoma_Nature2013_COSMIC_cutoff_exposures_df}} and
#' \code{\link{rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df}}.
#'
#' @name chosen_AlexInitialArtif_sigInd_df
#' @usage data(lymphoma_cohort_LCD_results)
#' @rdname exampleYAPSA
#'
NULL
#' Sigs info (Cosmic, only validated) for test data for plot functions
#'
#' \code{chosen_signatures_indices_df}: Signature information for the data
#' stored in
#' \code{\link{lymphoma_Nature2013_COSMIC_cutoff_exposures_df}} and
#' \code{\link{rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df}}.
#'
#' @name chosen_signatures_indices_df
#' @usage data(lymphoma_cohort_LCD_results)
#' @rdname exampleYAPSA
#'
NULL
#' Cutoffs for a supervised analysis of mutational signatures.
#'
#' Series of data frames with signature-specific cutoffs. All values represent
#' optimal cutoffs. The optimal cutoffs were determined for different choices
#' of parameters in the cost function of the optimization. The row index is
#' equivalent to the ratio between costs for false negative attribution and
#' false positive attribution. The columns correspond to the different
#' signatures. To be used with \code{\link{LCD_complex_cutoff}}.
#' There are two different sets of cutoffs one for the signatures described by
#' Alexandrov et al.(Natue 2013) and one for the signatures dokumented in
#' Alexandriv et al. (biorxiv 2018). The calculation of the PCAWG signature
#' specific cutoffs was perfomed in a single-sample resolution which are both
#' valid for whole genome and whole exome sequencing data analysis.
#'
#' @docType data
#' @name cutoffs
#' @usage data(cutoffs)
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#'
NULL
#' @docType data
#' @name cutoffs_pcawg
#' @usage data(cutoffs_pcawg)
#' @author Lea Jopp-Saile \email{huebschmann.daniel@@googlemail.com}
#'
NULL
#' Opt. cutoffs, rel exposures for the COSMIC sigs, only validated
#'
#' \code{cutoffCosmicValid_rel_df}: Optimal cutoffs for
#' \code{\link{AlexCosmicValid_sig_df}}, i.e. COSMIC signatures, only
#' validated, trained on relative exposures.
#'
#' @name cutoffCosmicValid_rel_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, rel exposures for the COSMIC sigs, including artifacts
#'
#' \code{cutoffCosmicArtif_rel_df}: Optimal cutoffs for
#' \code{\link{AlexCosmicArtif_sig_df}}, i.e. COSMIC signatures, including
#' artifact signatures, trained on relative exposures.
#'
#' @name cutoffCosmicArtif_rel_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, abs exposures for the COSMIC sigs, only validated
#'
#' \code{cutoffCosmicValid_abs_df}: Optimal cutoffs for
#' \code{\link{AlexCosmicValid_sig_df}}, i.e. COSMIC signatures, only
#' validated, trained on absolute exposures.
#'
#' @name cutoffCosmicValid_abs_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, abs exposures for the COSMIC sigs, including artifacts
#'
#' \code{cutoffCosmicArtif_abs_df}: Optimal cutoffs for
#' \code{\link{AlexCosmicArtif_sig_df}}, i.e. COSMIC signatures, including
#' artifact signatures, trained on absolute exposures.
#'
#' @name cutoffCosmicArtif_abs_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, rel exposures for the initial sigs, only validated
#'
#' \code{cutoffInitialValid_rel_df}: Optimal cutoffs for
#' \code{\link{AlexInitialValid_sig_df}}, i.e. initially published signatures,
#' only validated signatures, trained on relative exposures.
#'
#' @name cutoffInitialValid_rel_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, rel exposures for the initial sigs, including artifacts
#'
#' \code{cutoffInitialArtif_rel_df}: Optimal cutoffs for
#' \code{\link{AlexInitialArtif_sig_df}}, i.e. initially published signatures,
#' including artifact signatures, trained on relative exposures.
#'
#' @name cutoffInitialArtif_rel_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, abs exposures for the initial sigs, only validated
#'
#' \code{cutoffInitialValid_abs_df}: Optimal cutoffs for
#' \code{\link{AlexInitialValid_sig_df}}, i.e. initially published signatures,
#' only validated signatures, trained on absolute exposures.
#'
#' @name cutoffInitialValid_abs_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, abs exposures for the initial sigs, including artifacts
#'
#' \code{cutoffInitialArtif_abs_df}: Optimal cutoffs for
#' \code{\link{AlexInitialArtif_sig_df}}, i.e. initially published signatures,
#' including artifact signatures, trained on absolute exposures.
#'
#' @name cutoffInitialArtif_abs_df
#' @rdname cutoffs
#'
NULL
#' Opt. cutoffs, PCAWG SNV signatures, including artifacts
#'
#' \code{cutoffPCAWG_SBS_WGSWES_artifPid_df}: Optimal cutoffs for
#' \code{\link{PCAWG_SP_SBS_sigs_Artif_df}}, i.e. initially published
#' signatures,including artifact signatures, trained in a single-sample
#' resolution.
#'
#' @name cutoffPCAWG_SBS_WGSWES_artifPid_df
#' @rdname cutoffs_pcawg
#'
NULL
#' Opt. cutoffs, PCAWG SNV signatures, only validated signatures
#'
#' \code{cutoffPCAWG_SBS_WGSWES_realPid_df}: Optimal cutoffs for
#' \code{\link{PCAWG_SP_SBS_sigs_Real_df}}, i.e. initially published
#' signatures, only validated signatures, trained in a single-sample
#' resolution.
#'
#' @name cutoffPCAWG_SBS_WGSWES_realPid_df
#' @rdname cutoffs_pcawg
#'
NULL
#' Opt. cutoffs, PCAWG Indel signatures, only validated signatures
#'
#' \code{cutoffPCAWG_ID_WGS_Pid_df}: Optimal cutoffs for
#' \code{\link{PCAWG_SP_ID_sigs_df}}, i.e. initially published signatures,
#' signatures, trained in a single-sample resolution.
#'
#' @name cutoffPCAWG_ID_WGS_Pid_df
#' @rdname cutoffs_pcawg
#'
NULL
#' Correction factors for different target capture kits
#'
#' List of lists with correction factors for different target capture kits.
#' The elements of the overall list are lists, every one carrying information
#' for one target capture kit (and namend after it). The elements of these
#' sublists are 64 dimensional vectors with correction factors for all
#' triplets. They were computed using counts of occurence of the respective
#' triplets in the target capture and in the reference genome and making
#' ratios (either for the counts themselves as in \code{abs_cor} or for the
#' relative occurences in \code{rel_cor}). The information in this data
#' structure may be used as input to
#' \code{\link{normalizeMotifs_otherRownames}}.
#'
#' @docType data
#' @name targetCapture_cor_factors
#' @usage data(targetCapture_cor_factors)
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#' @return A list of lists of data frames
#'
NULL
#' Colours codes for displaying SNVs
#'
#' Vector attributing colours to nucleotide exchanges used when displaying
#' SNV information, e.g. in a rainfall plot.
#'
#' @docType data
#' @name exchange_colour_vector
#' @usage data(exchange_colour_vector)
#' @author Daniel Huebschmann \email{huebschmann.daniel@@googlemail.com}
#' @return A named character vector
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.