Nothing
#----------------------------------------------------------------------------------------------------
#' Run the Elastic Net Solvers
#' @description Given a TReNA object with either LASSO or Ridge Regression as the solver, use the \code{\link{glmnet}} function to estimate coefficients for each transcription factor as a predictor of the target gene's expression level.
#'
#' @param obj An object of class Solver
#' @param target.gene A designated target gene that should be part of the mtx.assay data
#' @param tfs The designated set of transcription factors that could be associated with the target gene.
#' @param tf.weights A set of weights on the transcription factors (default = rep(1, length(tfs)))
#' @param alpha The LASSO/Ridge tuning parameter
#' @param lambda The penalty tuning parameter for elastic net
#' @param keep.metrics A binary variable indicating whether or not to keep metrics
#'
#' @return A data frame containing the coefficients relating the target gene to each transcription factor, plus other fit parameters
#'
#' @seealso \code{\link{glmnet}}
#'
#' @examples
#'
.elasticNetSolver <- function (obj, target.gene, tfs, tf.weights, alpha, lambda, keep.metrics){
if(length(tfs) == 0)
return(data.frame())
# we don't try to handle tf self-regulation
deleters <- grep(target.gene, tfs)
if(length(deleters) > 0){
tfs <- tfs[-deleters]
tf.weights <- tf.weights[-deleters]
if(!obj@quiet)
message(sprintf("Removing target.gene from candidate regulators: %s", target.gene))
}
if( length(tfs) == 0 ) return( data.frame() )
mtx <- getAssayData(obj)
stopifnot(target.gene %in% rownames(mtx))
stopifnot(all(tfs %in% rownames(mtx)))
stopifnot(class(lambda) %in% c("NULL","numeric"))
features <- t(mtx[tfs,,drop=FALSE ])
target <- as.numeric(mtx[target.gene,])
if( length(tfs) == 1 ) {
fit = stats::lm( target ~ features )
mtx.beta = stats::coef(fit)
cor.target.feature = stats::cor( target , features )[1,1]
mtx.beta = data.frame( beta = mtx.beta[2] , intercept = mtx.beta[1] , gene.cor = cor.target.feature )
rownames(mtx.beta) = tfs
if( keep.metrics == FALSE ) return( mtx.beta )
if( keep.metrics == TRUE ) return( list( mtx.beta = mtx.beta , lambda = NA , r2 = cor.target.feature^2 ) )
}
if( is.null(lambda) ) {
# Run Permutation testing to find lambda
if( alpha != 0 )
alpha.perm = alpha
else(alpha.perm = 0.1)
target.mixed <- sample(target)
threshold <- 1E-15
lambda.change <- 10^(-4)
lambda <- 1
lambda.list <- numeric(length=50)
for(i in 1:length(lambda.list)){
# Do a binary search
step.size <- lambda/2 # Start at 0.5
while(step.size > lambda.change){
# Get the fit
fit <- glmnet(features, target.mixed, penalty.factor = tf.weights, alpha=alpha.perm, lambda=lambda)
# Case 1: nonsense, need to lower lambda
if(max(fit$beta) < threshold){
lambda <- lambda - step.size
}
# Case 2: sense, need to raise lambda
else{
lambda <- lambda + step.size
}
# Halve the step size and re-scramble the target
step.size <- step.size/2
target.mixed <- sample(target)
}
lambda.list[[i]] <- lambda
}
# Give lambda as 1 + 1se
lambda <- mean(lambda.list) + (stats::sd(lambda.list)/sqrt(length(lambda.list)))
fit <- glmnet(features, target, penalty.factor=tf.weights, alpha=alpha, lambda=lambda)
}
# For non-LASSO
# else{
# fit <- cv.glmnet(features, target, penalty.factor=tf.weights, grouped=FALSE , alpha = alpha )
# lambda.min <- fit$lambda.min
# lambda <-fit$lambda.1se
# }
else if(is.numeric(lambda)){
fit = glmnet(features, target, penalty.factor=tf.weights, alpha=alpha, lambda=lambda)
}
# extract the exponents of the fit
mtx.beta <- as.matrix( stats::predict( fit , newx = features , type = "coef" , s = lambda ) )
colnames(mtx.beta) <- "beta"
deleters <- as.integer(which(mtx.beta[,1] == 0))
if( all( mtx.beta[,1] == 0 ) ) return( data.frame() )
if(length(deleters) > 0)
mtx.beta <- mtx.beta[-deleters, , drop=FALSE]
# put the intercept, admittedly with much redundancy, into its own column
intercept <- mtx.beta[1,1]
mtx.beta <- mtx.beta[-1, , drop=FALSE]
mtx.beta <- cbind(mtx.beta, intercept=rep(intercept, nrow(mtx.beta)))
correlations.of.betas.to.targetGene <- unlist(lapply(rownames(mtx.beta), function(x) stats::cor(mtx[x,], mtx[target.gene,])))
mtx.beta <- as.matrix(cbind( mtx.beta, gene.cor=correlations.of.betas.to.targetGene))
#if(!obj@quiet)
# graphics::plot(fit.nolambda, xvar='lambda', label=TRUE)
if( nrow(mtx.beta) > 1 ) {
ordered.indices <- order(abs(mtx.beta[, "beta"]), decreasing=TRUE)
mtx.beta <- mtx.beta[ordered.indices,]
}
mtx.beta = as.data.frame(mtx.beta)
if( keep.metrics == TRUE ) {
pred.values = stats::predict( fit , newx = features , s = lambda , type = "link" )
r2 = (stats::cor( target , pred.values )[1,1])^2
return( list( mtx.beta = mtx.beta , lambda = lambda , r2 = r2 ) )
}
if( keep.metrics == FALSE )
return(as.data.frame(mtx.beta))
}
# ElasticNetSolver
#----------------------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.