Nothing
#' Class RandomForestSolver
#'
#' @import randomForest
#' @include Solver.R
#' @import methods
#'
#' @name RandomForestSolver-class
#' @rdname RandomForestSolver-class
.RandomForestSolver <- setClass ("RandomForestSolver", contains="Solver")
#----------------------------------------------------------------------------------------------------
#' Create a Solver class object using the Random Forest solver
#'
#' @param mtx.assay An assay matrix of gene expression data
#' @param quiet A logical denoting whether or not the solver should print output
#'
#' @return A Solver class object with Random Forest as the solver
#'
#' @seealso \code{\link{solve.RandomForest}}, \code{\link{getAssayData}}
#'
#' @family Solver class objects
#'
#' @export
#'
#' @examples
#' solver <- RandomForestSolver()
RandomForestSolver <- function(mtx.assay=matrix(), quiet=TRUE)
{
obj <- .RandomForestSolver(Solver(mtx.assay=mtx.assay, quiet=quiet))
# Send a warning if there's a row of zeros
if(!is.na(max(mtx.assay)) & any(rowSums(mtx.assay) == 0))
warning("One or more gene has zero expression; this may yield warnings when using Random Forest.")
obj
} # RandomForestSolver, the constructor
#----------------------------------------------------------------------------------------------------
#' Run the Random Forest Solver
#'
#' @rdname solve.RandomForest
#' @aliases run.RandomForestSolver solve.RandomForest
#'
#' @description
#' Given a TReNA object with RandomForest as the solver, use the \code{\link{randomForest}} function
#' to estimate coefficients for each transcription factor as a predictor of the target gene's
#' expression level.
#' This method should be called using the \code{\link{solve}} method on an appropriate TReNA object.
#'
#' @param obj An object of class Solver with "randomForest" as the solver string
#' @param target.gene A designated target gene that should be part of the mtx.assay data
#' @param tfs The designated set of transcription factors that could be associated with the target gene.
#' @param tf.weights A set of weights on the transcription factors (default = rep(1, length(tfs)))
#' @param extraArgs Modifiers to the Random Forest solver
#'
#' @return A list containing various parameters of the Random Forest fit.
#'
#' @seealso \code{\link{randomForest}}, \code{\link{RandomForestSolver}}
#'
#' @family solver methods
#'
#' @examples
#' # Load included Alzheimer's data, create a TReNA object with Random Forest as solver, and solve
#' load(system.file(package="TReNA", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' trena <- TReNA(mtx.assay = mtx.sub, solver = "randomForest")
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' tbl <- solve(trena, target.gene, tfs)
setMethod("run", "RandomForestSolver",
function (obj, target.gene, tfs, tf.weights=rep(1,length(tfs), extraArgs=list())){
# Check if target.gene is in the bottom 10% in mean expression; if so, send a warning
if(rowMeans(getAssayData(obj))[target.gene] < stats::quantile(rowMeans(getAssayData(obj)), probs = 0.1)){
warning("Target gene mean expression is in the bottom 10% of all genes in the assay matrix")
}
mtx <- getAssayData(obj)
stopifnot(target.gene %in% rownames(mtx))
stopifnot(all(tfs %in% rownames(mtx)))
if(length(tfs)==0) return(NULL)
# we don't try to handle tf self-regulation
deleters <- grep(target.gene, tfs)
if(length(deleters) > 0){
tfs <- tfs[-deleters]
tf.weights = tf.weights[-deleters]
}
if(length(tfs)==0) return(NULL)
x = t(mtx[tfs,,drop=FALSE])
y = as.vector(t(mtx[target.gene,])) # Change y to a vector to avoid RF warning
fit <- randomForest( x = x, y = y )
edges = as.data.frame(fit$importance)
pred.values = stats::predict(fit)
r2 = stats::cor(pred.values , mtx[target.gene,])^2
gene.cor <- sapply(rownames(edges), function(tf) stats::cor(mtx[tf,], mtx[target.gene,]))
edges$gene.cor <- gene.cor
edges <- edges[order(edges$IncNodePurity, decreasing=TRUE),]
return(list(edges = edges , r2 = r2))
})
#----------------------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.