R/sisal.R

Defines functions sisal

sisal <- function(Y, p, iters = 80, tau = 1,mu = p * 1000 / ncol(Y),spherize = FALSE,
                  tol = 1e-2, m0 = NULL, verbose=FALSE,nonNeg = FALSE){
     rnames <- rownames(Y)
     L <- nrow(Y)
     N <- ncol(Y)

     if (L < p) stop("Insufficient number of columns in y")

     # local stuff

     slack <- 1e-3
     energyDecreasing <- 0
     fValBack <- Inf
     lamSphe <- 1e-8
     lamQuad <- 1e-6
     ALiters <- 4
     flaged <- 0

     hinge <- function(Y) {
          return(pmax(-Y, 0))
     }

     softNeg <- function(Y, tau) {
          z <- pmax(abs(Y + tau / 2) - tau / 2, 0)
          z <- z / (z + tau / 2) * (Y + tau / 2)
          return(z)
     }

     ## At first we are getting the affine set
     Ymean <- apply(Y, 1, mean)
     ym <- matrix(Ymean, ncol=1)
     Y <- Y - Ymean
     svdObj <- fast.svd(Y)
     Up <- svdObj$u[, 1:(p-1)]
     proj <- Up %*% t(Up)
     D <- svdObj$d[1:(p-1)]

     Y <- proj %*% Y

     Y <- Y + Ymean
     YmeanOrtho <- ym - proj %*% ym
     Up <- cbind(Up, YmeanOrtho / (sqrt(sum(YmeanOrtho ^ 2))))
     singValues <- D

     Y <- t(Up) %*% Y

     ## spherizing
     if (spherize) {
          Y <- Up %*% Y
          Y <- Y - Ymean
          C <- diag(1 / sqrt(D + lamSphe))
          IC <- solve(C)
          Y <- C %*% t(Up[, 1:(p-1)]) %*% Y
          Y <- rbind(Y, 1)
          Y <- Y / sqrt(p)
     }

     ## Init

     if (is.null(m0)) {
          Mvca <- vca(Y, p, verbose=verbose)
          M <- Mvca
          Ym <- apply(M, 1, mean)
          dQ <- M - Ym
          M <- M + p * dQ
     } else {
          M <- m0
          M <- M - Ymean
          M <- Up[, 1:(p-1)] %*% t(Up[, 1:(p - 1)]) %*% M
          M <- M + Ymean
          M <- t(Up) %*% M
          if (spherize) {
               M <- Up %*% M - Ymean
               M <- C %*% t(Up[, 1:(p - 1)]) %*% M
               M[p, ] <- 1
               M <- M / sqrt(p)
          }
     }

     Q0 <- solve(M)
     Q <- Q0

     AAT <- kronecker(Y %*% t(Y), diag(nrow=p))
     B <- kronecker(diag(nrow=p), matrix(1, nrow=1, ncol=p))
     qm <- rowSums(solve(Y %*% t(Y)) %*% Y)
     qm <- matrix(qm, ncol=1)

     H <- lamQuad * diag(nrow=p^2)
     FF <- H + mu * AAT
     IFF <- solve(FF)


     G <- IFF %*% t(B) %*% solve(B %*% IFF %*% t(B))
     qmAux <- G %*% qm
     G <- IFF - G %*% B %*% IFF

     Z <- Q %*% Y
     Bk <- 0 * Z

     fmin = Inf
     Qmin = NULL

     for (k in seq_len(iters)) {
          IQ <- solve(Q)
          g <- -t(IQ)
          dim(g) <- c(nrow(g) * ncol(g), 1)

          q0 <- Q
          dim(q0) <- c(nrow(Q) * ncol(Q), 1)
          Q0 <- Q

          baux <- H %*% q0 - g

          if (verbose) {
               if (spherize) {
                    M <- IQ * sqrt(p)
                    M <- M[1:(p-1), ]
                    M <- Up[, 1:(p-1)] %*% IC %*% M
                    M <- M + Ymean
                    M <- t(Up) %*% M
               } else {
                    M <- IQ
               }
               message(sprintf("Iteration %d, simplex volume = %4f", k, abs(det(M)) / factorial(nrow(M))))
          }

          if (k == iters) {
               ALiters <- 100
          }

          while (TRUE) {
               q <- Q
               dim(q) <- c(nrow(Q) * ncol(Q), 1)

               f0val <- -log(abs(det(Q))) + tau * sum(hinge(Q %*% Y))
               f0quad <- t(q - q0) %*% g + 0.5 * t(q - q0) %*% H %*% (q - q0) + tau * sum(hinge(Q %*% Y))

               for (i in 2:ALiters) {
                    dqAux <- Z + Bk
                    dtzB <- dqAux %*% t(Y)
                    dim(dtzB) <- c(nrow(dtzB) * ncol(dtzB), 1)
                    b <- baux + mu * dtzB
                    q <- G %*% b + qmAux
                    Q <- matrix(q, nrow=p, ncol=p)

                    Z <- softNeg(Q %*% Y - Bk, tau / mu)

                    Bk <- Bk - (Q %*% Y - Z)

               }

               fquad_tmp <- t(q - q0) %*% g + 0.5 * t(q - q0) %*% H %*% (q - q0) + tau * sum(hinge(Q %*% Y))
               fval_tmp <- -log(abs(det(Q))) + tau * sum(hinge(Q %*% Y))

               fquad <- t(q - q0) %*% g + 0.5 * t(q - q0) %*% H %*% (q - q0) + tau * sum(hinge(Q %*% Y))
               fval <- -log(abs(det(Q))) + tau * sum(hinge(Q %*% Y))

               if (f0quad >= fquad) {
                    while (f0val - fval < 0) {
                         Q <- (Q + Q0) / 2
                         fval <- -log(abs(det(Q))) + tau * sum(hinge(Q %*% Y))
                    }

                    break
               }

          }
     }

     if (nonNeg) {
          qorig <- Up %*% solve(Q)

          if (any(qorig < 0)) {
               diff <- Ymean - qorig

               shift <- sapply(1:p, function(i) {
                    tmp <- qorig[, i] / diff[, i]
                    ifelse(any(qorig[, i] < 0), min(tmp[qorig[, i] < 0]), 0)
               })

               shift <- -shift + (0.00001)
               qorig <- qorig + diff %*% diag(shift)
               Q <- solve(t(Up) %*% qorig)
               q <- Q
               dim(q) <- c(nrow(Q) * ncol(Q), 1)
          }
     }

     distanceToEndpoints <- apply(M, 2, function(x) {
          shifted <- Y - x
          dds <- sqrt(colSums(shifted^2))
          return(dds)
     })

     endpointsProjection <- M

     if (spherize) {
          M <- solve(Q)
          M <- M * sqrt(p)
          M <- M[1:(p - 1), ]
          M <- Up[, 1:(p - 1)] %*% IC %*% M
          M <- M + Ymean
     } else {
          M <- Up %*% solve(Q)
     }

     colnames(M) <- paste0("Pure gene ", seq_len(p))
     rownames(M) <- rnames

     retVal <- list(
          endpoints = M,
          endpointsProjection = endpointsProjection,
          projection = Up,
          shift = Ymean,
          singValues = singValues,
          distances = distanceToEndpoints,
          reduced = Y,
          q = Q
     )
     return(retVal)
}

Try the TOAST package in your browser

Any scripts or data that you put into this service are public.

TOAST documentation built on Nov. 8, 2020, 5:55 p.m.