Nothing
##
## The generic functions used in TCC package are defined in this file.
##
plot.TCC <- function(x, FDR = NULL, median.lines = FALSE, floor = 0,
group = NULL, col = NULL, col.tag = NULL,
normalize = TRUE, ...) {
## The function for plotting M-A plot links to TCC class object. The
## function calls the method implemented in TCC class. It plots M-A
## plot and output (but no show) the coordinates of M-A plot as
## data.frame class object.
invisible(x$plotMA(FDR = FDR, median.lines = median.lines, floor = floor,
group = group, col = col, col.tag = col.tag,
normalize = normalize, ...))
}
subset.TCC <- function(x, subset, ...){
## The function return the subset of count filed of TCC class object.
## Note that, it does not change the normalization factors when it slices
## the subsect.
if(!is.logical(subset)){
if(is.numeric(subset)){
new_v = logical(length(x))
new_v[subset] <- TRUE
return(subset(x, new_v))
}
if(is.character(subset)){
new_v = logical(length(x))
names(new_v) <- x$gene_id
new_v[subset] <- TRUE
return(subset(x, new_v))
}
message("subset called with unsupported type")
return(F);
}
new_tcc <- new("TCC", as.matrix(x$count[subset, ]),
x$group, x$norm.factors,
as.character(x$gene_id[subset]))
if (x$private$estimated == TRUE) {
new_tcc$stat$rank <- x$stat$rank[subset]
new_tcc$stat$p.value <- x$stat$p.value[subset]
new_tcc$stat$q.value <- x$stat$q.value[subset]
}
if (!is.null(x$estimatedDEG) && length(x$estimatedDEG) > 0){
new_tcc$estimatedDEG <- x$estimatedDEG[subset]
}
if (!is.null(x$simulation)){
if(length(x$simulation$trueDEG)>0)
new_tcc$simulation$trueDEG <- x$simulation$trueDEG[subset]
if(length(x$simulation$fold.change)>0)
new_tcc$simulation$fold.change <- x$simulation$fold.change[subset]
new_tcc$simulation$PDEG <- x$simulation$PDEG
}
new_tcc$private <- x$private
return(new_tcc)
}
show.TCC <- function(object) {
## The function for showing the conttents of TCC class object clearly.
## The function shows the head of count data and normalization factors,
## shows the normalization pipeline if normalized, and shows the results
## if the identification was performed.
## Counts.
cat("Count:\n")
print(head(object$count))
cat("\n")
## Conditions and Annotations.
df <- data.frame(
norm.factors = object$norm.factors,
lib.sizes = object$norm.factors * colSums(object$count)
)
rownames(df) <- colnames(object$count)
df <- cbind(object$group, df)
cat("Sample:\n")
print(df)
cat("\n")
## Normalized results.
if (object$private$normalized) {
cat("DEGES:\n")
cat(paste(" Pipeline : ",
object$DEGES$pipeline,
"\n", sep = ""))
cat(paste(" Execution time : ",
sprintf("%.1f", object$DEGES$execution.time[3]),
" sec\n", sep = ""))
cat(paste(" Threshold type : ",
object$DEGES$threshold$type,
" < ",
sprintf("%.2f", object$DEGES$threshold$input),
"\n",
" Potential PDEG : ",
sprintf("%.2f", sum(object$DEGES$potDEG != 0) /
length(object$DEGES$potDEG)),
"\n\n", sep = ""))
}
## Esimated results.
if (object$private$estimated) {
df <- getResult(object)
cat("Results:\n")
print(head(df))
cat("\n")
}
}
setGeneric(
name = "calcNormFactors",
def = function(tcc, ...) tcc)
setMethod(
f = "calcNormFactors",
signature(tcc = "DGEList"),
definition = function(tcc, ...) {
return(edgeR::calcNormFactors(tcc, ...))
}
)
setMethod(
f = "names",
signature(x = "TCC"),
definition = function(x) {
return (c("count", "gene_id", "group", "norm.factors",
"DEGES", "stat", "estimatedDEG", "simulation"))
}
)
setMethod(
f = "length",
signature(x = "TCC"),
definition = function(x) {
return (nrow(x$count))
}
)
setMethod(
f = "[",
signature(x = "TCC"),
definition = function(x, i){
return(subset(x,i))
}
)
#setMethod(
# f = "subset",
# signature(x = "TCC"),
# definition = subset.TCC
#)
setMethod(
f = "show",
signature(object = "TCC"),
definition = show.TCC
)
#setMethod(
# f = "plot",
# signature(x = "TCC"),
# definition = plot.TCC
#)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.