Description Usage Value Examples
A function to visualise Spatial Transcriptomics. It requires a prepocessed Seurat Object or a SingleCellExperiment object as well as a rasterised image saved as an .rds object. There are 4 plots available in the app showing: a) the number of genes detected per spot, b) the number of reads detected per spot, c) clustering results, d) the gene expression of a selected gene." To view the clustering results the columns of the meta.data or colData containing clustering results must be prefixed with cluster_ . This can be done by using the markClusterCol() function included in Spaniel.
1 |
Runs a Shiny App
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## mark the columns of metadata/colData that contain clustering
## information see ?markClusterCol for more details#'
sObj <- readRDS(file.path(system.file(package = "Spaniel"),
"extdata/SeuratData.rds"))
sObj <- markClusterCol(sObj, "res")
### parse background image
imgFile <- file.path(system.file(package = "Spaniel"),
"HE_Rep1_resized.jpg")
img <- parseImage(imgFile)
## run shinySpaniel (upload data.rds and image.rds in the shiny app)
## Not Run:
# runShinySpaniel()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.