Nothing
test_alleleFrequency_sum <- function() {
gds <- SeqVarTools:::.testData()
maxn <- max(nAlleles(gds))
af <- matrix(nrow=SeqVarTools:::.nVar(gds), ncol=maxn)
for (n in 1:maxn) af[,n] <- alleleFrequency(gds, n=(n-1))
checkTrue(all(rowSums(af) == 1))
seqClose(gds)
}
test_alleleFrequency_info <- function() {
gds <- SeqVarTools:::.testData()
ac <- seqGetData(gds, "annotation/info/AC")
an <- seqGetData(gds, "annotation/info/AN")
checkEquals(ac/an, alleleFrequency(gds, n=1))
seqClose(gds)
}
test_alleleFrequency_apply <- function() {
gds <- SeqVarTools:::.testData()
var.id <- 101:110
samp.id <- seqGetData(gds, "sample.id")[6:10]
seqSetFilter(gds, variant.id=var.id, sample.id=samp.id, verbose=FALSE)
af <- alleleFrequency(gds)
seqSetFilter(gds, verbose=FALSE)
checkIdentical(af,
applyMethod(gds, alleleFrequency, variant=var.id, sample=samp.id))
seqClose(gds)
}
.testGdsXY <- function() {
# make up file with sex chroms
gds.fn <- tempfile()
invisible(file.copy(seqExampleFileName("gds"), gds.fn))
gds <- openfn.gds(gds.fn, readonly=FALSE)
node <- index.gdsn(gds, "chromosome")
compression.gdsn(node, "")
chr <- read.gdsn(node)
chr[chr == 1] <- "X"
chr[chr == 2] <- "Y"
write.gdsn(node, chr)
closefn.gds(gds)
seqOptimize(gds.fn, target="chromosome", verbose=FALSE)
gds <- seqOpen(gds.fn)
sample.id <- seqGetData(gds, "sample.id")
set.seed(44); sex <- sample(c("M","F"), replace=TRUE, length(sample.id))
df <- data.frame(sample.id, sex, stringsAsFactors=FALSE)
SeqVarData(gds, sampleData=Biobase::AnnotatedDataFrame(df))
}
.cleanupGds <- function(gds) {
fn <- seqSummary(gds, check="none", verbose=FALSE)$filename
seqClose(gds)
unlink(fn)
}
test_alleleFrequency_sex <- function() {
svd <- .testGdsXY()
sex <- sampleData(svd)$sex
af <- alleleFrequency(svd)
geno <- refDosage(svd, use.names=FALSE)
chr <- chromWithPAR(svd)
auto <- chr %in% 1:22
checkEquals(0.5*colMeans(geno[,auto], na.rm=TRUE), af[auto])
X <- chr == "X"
female <- sex == "F"
male <- sex == "M"
F.count <- colSums(geno[female, X], na.rm=TRUE)
F.nsamp <- colSums(!is.na(geno[female, X]))
M.count <- 0.5*colSums(geno[male, X], na.rm=TRUE)
M.nsamp <- colSums(!is.na(geno[male, X]))
checkEquals((F.count + M.count)/(2*F.nsamp + M.nsamp), af[X])
Y <- chr == "Y"
checkEquals(0.5*colMeans(geno[male,Y], na.rm=TRUE), af[Y])
# PAR
checkTrue(all(chr[1:3] == "PAR"))
checkEquals(0.5*colMeans(geno[,1:3], na.rm=TRUE), af[1:3])
# names
af <- alleleFrequency(svd, use.names=TRUE)
checkEquals(as.character(seqGetData(svd, "variant.id")), names(af))
.cleanupGds(svd)
}
test_alleleFrequency_nosex <- function() {
gds <- SeqVarTools:::.testSeqVarData()
# make sure there is no warning when we don't want to check sex
options(warn=2)
tmp <- alleleFrequency(gds, sex.adjust=FALSE)
tmp <- alleleFrequency(gds, sex.adjust=TRUE) # no sex chrom in this data
options(warn=1)
seqClose(gds)
}
test_alleleCount_sex <- function() {
svd <- .testGdsXY()
sex <- sampleData(svd)$sex
ac <- alleleCount(svd)
geno <- refDosage(svd, use.names=FALSE)
chr <- chromWithPAR(svd)
auto <- chr %in% 1:22
checkEquals(colSums(geno[,auto], na.rm=TRUE), ac[auto])
X <- chr == "X"
female <- sex == "F"
male <- sex == "M"
F.count <- colSums(geno[female, X], na.rm=TRUE)
M.count <- 0.5*colSums(geno[male, X], na.rm=TRUE)
checkEquals((F.count + M.count), ac[X])
Y <- chr == "Y"
checkEquals(0.5*colSums(geno[male,Y], na.rm=TRUE), ac[Y])
# MAC
mac <- minorAlleleCount(svd)
ac.alt <- alleleCount(svd, n=1) + alleleCount(svd, n=2)
minor <- ac < ac.alt
checkEquals(ac[minor], mac[minor])
checkEquals(ac.alt[!minor], mac[!minor])
# PAR
checkTrue(all(chr[1:3] == "PAR"))
checkEquals(colSums(geno[,1:3], na.rm=TRUE), ac[1:3])
# names
ac <- alleleCount(svd, use.names=TRUE)
checkEquals(as.character(seqGetData(svd, "variant.id")), names(ac))
.cleanupGds(svd)
}
## this file is badly formatted for current SeqArray
## test_1KG_Y <- function() {
## gdsfmt::showfile.gds(closeall=TRUE, verbose=FALSE)
## gds.fn <- system.file("extdata", "1KG_chrY.gds", package="SeqVarTools")
## gds <- seqOpen(gds.fn)
## sample.id <- seqGetData(gds, "sample.id")
## df <- data.frame(sample.id, sex="M", stringsAsFactors=FALSE)
## svd <- SeqVarData(gds, sampleData=Biobase::AnnotatedDataFrame(df))
## af <- alleleFrequency(svd)
## geno <- refDosage(svd, use.names=FALSE)
## chr <- chromWithPAR(gds)
## checkTrue(all(chr == "Y"))
## checkEquals(colMeans(geno, na.rm=TRUE), af)
## # AC
## ac <- alleleCount(svd)
## checkEquals(colSums(geno, na.rm=TRUE), ac)
## # MAC
## mac <- minorAlleleCount(svd)
## ac.alt <- alleleCount(svd, n=1) + alleleCount(svd, n=2) + alleleCount(svd, n=3) + alleleCount(svd, n=4)
## minor <- ac < ac.alt
## checkEquals(ac[minor], mac[minor])
## checkEquals(ac.alt[!minor], mac[!minor])
## seqClose(gds)
## }
test_alleleCount_allF <- function() {
svd <- .testGdsXY()
sex <- sampleData(svd)$sex
seqSetFilter(svd, sample.sel=(sex == "F"), verbose=FALSE)
ac <- alleleCount(svd)
geno <- refDosage(svd, use.names=FALSE)
chr <- chromWithPAR(svd)
X <- chr == "X"
F.count <- colSums(geno[, X], na.rm=TRUE)
checkEquals((F.count), ac[X])
Y <- chr == "Y"
checkTrue(all(ac[Y] == 0))
# MAC
mac <- minorAlleleCount(svd)
ac.alt <- alleleCount(svd, n=1) + alleleCount(svd, n=2)
minor <- ac < ac.alt
checkEquals(ac[minor], mac[minor])
checkEquals(ac.alt[!minor], mac[!minor])
.cleanupGds(svd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.